【題目】如圖,在△ABC中,AB = AC,AB的垂直平分線DE交AC于D,交AB于E.
(1)若AB = AC = 8cm,BC = 6cm,求△BCD的周長;
(2)若∠CBD = 30°,試求∠A的度數(shù).
【答案】(1)14cm;(2)∠A=40°.
【解析】
(1)根據(jù)DE垂直平分AB得到DB=AD,由此求出答案;
(2)根據(jù)DB=AD得到∠BDC=2∠A,利用AB=AC得到∠C =∠A+30°,再根據(jù)三角形的內角和定理即可求出答案.
(1)∵DE垂直平分AB,
∴DB=AD,
∴△BCD的周長=DB+DC+BC=AD+DC+BC=AC+BC=8cm+6cm=14cm;
(2)∵DB=AD,
∴∠A=∠ABD,
∴∠BDC=2∠A,
∵AB=AC,
∴∠C=∠ABC=∠ABD+∠DBC=∠A+30°,
∵∠DBC+∠BDC+∠C=180°,
∴30°+2∠A+∠A+30°=180°,
∴∠A=40°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)的圖象分別與,軸交于,兩點,正比例函數(shù)的圖象與交于點.
(1)求的值及的解析式;
(2)求的值;
(3)一次函數(shù)的圖象為,且,,不能圍成三角形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的方格圖.
(1)請在方格圖中建立平面直角坐標系,使點的坐標為(3,3),點的坐標為(1,0);
(2)點的坐標為(4,1),在圖中找到點,順次連接點、、,并作出關于軸對稱的圖形;
(3)中邊邊上的高為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,的頂點均在格點上,點A的坐標為,點B的坐標為,點C的坐標為.
(1)以點C為旋轉中心,將旋轉后得到,請畫出;
(2)平移,使點A的對應點的坐標為,請畫出;
(3)若將繞點P旋轉可得到,則點P的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是一個長為2m,寬為2n的長方形,沿圖中虛線剪成四個均勻的小長方形,然后按圖(2)形狀拼成一個正方形.
(1)你認為圖(2)中的陰影部分的正方形的邊長等于多少?
(2)觀察圖(2),你能寫出下列三個代數(shù)式之間的等量關系嗎?代數(shù)式:,,;
(3)已知:,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫。要求每位同學必須參加,且限報一項活動。以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結果繪成如圖1、圖2所示的兩幅統(tǒng)計圖。請你結合圖示所給出的信息解答下列問題。
(1)求出參加繪畫比賽的學生人數(shù)占全班總人數(shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學生所在扇形圓心角的度數(shù)?
(3)若該校九年級學生有600人,請你估計這次藝術活動中,參加演講和唱歌的學生各有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.
(1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;
(2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為 2a 的等邊△ABC 中,M 是高 CH 所在直線上的一個動點, 連接 BM,將線段 BM 繞點 B 逆時針旋轉 60°得到 BN,連接 HN,則在點 M 運動的過程中,線段 BN 長度的最小值為___________ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com