【題目】如圖,在平面直角坐標系xOy中,直線y= x經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD,若點B的坐標為(2,0),則點C的坐標為

【答案】(﹣1,
【解析】解:過點C作CE⊥x軸于點E,

∵OB=2,AB⊥x軸,點A在直線y= x上,
∴AB=2 ,OA= =4,
∴RT△ABO中,tan∠AOB= = ,
∴∠AOB=60°,
又∵△CBD是由△ABO繞點B逆時針旋轉(zhuǎn)60°得到,
∴∠D=∠AOB=∠OBD=60°,AO=CD=4,
∴△OBD是等邊三角形,
∴DO=OB=2,∠DOB=∠COE=60°,
∴CO=CD﹣DO=2,
在RT△COE中,OE=COcos∠COE=2× =1,
CE=COsin∠COE=2× = ,
∴點C的坐標為(﹣1, ),
故答案為:(﹣1, ).
在RT△AOB中,求出AO的長,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AO=CD=4、OB=BD、△OBD是等邊三角形,進而可得RT△COE中∠COE=60°、CO=2,由三角函數(shù)可得OE、CE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,DAB邊上的一動點,以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△ACE≌△BCD;

(2)判斷AEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,交AC邊于點E.過點D作⊙O的切線,交AC于點F,交AB的延長線于點G,連接DE.
(1)求證:BD=CD;
(2)若∠G=40°,求∠AED的度數(shù).
(3)若BG=6,CF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACD,CEABEBD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的同學調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,則表示“無所謂”的家長人數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,下列條件中,不能說明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=4,CD=3,ABC=ACB=ADC=45°,則BD的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點E,F之間距離是10cmAB,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫度與我們的生活息息相關(guān),你仔細觀察過溫度計嗎?如圖是一個溫度計實物示意圖,左邊的刻度是攝氏溫度(),右邊的刻度是華氏溫度(),設(shè)攝氏溫度為x(℃),華氏溫度為y(℉),則yx的一次函數(shù).

(1)仔細觀察圖中數(shù)據(jù),試求出yx之間的函數(shù)表達式;

(2)當攝氏溫度為零下15℃時,求華氏溫度為多少?

查看答案和解析>>

同步練習冊答案