【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,1),如果將線段OA繞點(diǎn)O逆時針方向旋轉(zhuǎn)90°,那么點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)為( 。
A. (﹣1,2) B. (﹣2,1) C. (1,﹣2) D. (2,﹣1)
【答案】A
【解析】
作OB⊥OA,且OA=OB,則B點(diǎn)即為A 點(diǎn)的對應(yīng)點(diǎn).作AC⊥x軸于C,BD⊥x軸于D,通過證明△AOC≌△BOD即可求出B點(diǎn)坐標(biāo).
如圖:作OB⊥OA,且OA=OB,則B點(diǎn)即為A 點(diǎn)的對應(yīng)點(diǎn).作AC⊥x軸于C,BD⊥x軸于D,
∵OB⊥OA,且OA=OB,
∴點(diǎn)B即為A點(diǎn)的對應(yīng)點(diǎn),
∵∠AOC+∠BOD=90°,∠DBO+∠BOD=90°,
∴∠AOC=∠BOD,
∵OA=OB,∠BDO=∠ACO=90°,
∴△BOD≌△AOC,
∴OD=AC=1,BD=OC=2,
∴點(diǎn)B坐標(biāo)為(-1,2),
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)坐標(biāo)分別為A(3,0),B(0,4),C(-3,0),動點(diǎn)M,N同時從A點(diǎn)出發(fā),N沿A→C,M沿折線A→B→C,均以每秒1個單位長度的速度移動,當(dāng)一個動點(diǎn)到達(dá)終點(diǎn)C時,另一個動點(diǎn)也隨之停止移動,移動時間記為t秒.連接MN.
(1)移動過程中,將△ABC沿直線MN折疊,若點(diǎn)A恰好落在BC邊上的點(diǎn)D處,求此時t的值.
(2)當(dāng)點(diǎn)M,N移動時,記△ABC在直線MN右側(cè)部分的面積為S,求S關(guān)于時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā)相向而行,并以各自的速度勻速行駛,兩車在相遇之前同時改變了一次速度,并同時到達(dá)各自目的地,兩車距B地的路程y(km)與出發(fā)時間x(h)之間的函數(shù)圖象如圖所示.
(1)分別求甲、乙兩車改變速度后y與x之間的函數(shù)關(guān)系式;
(2)若m=1,分別求甲、乙兩車改變速度之前的速度;
(3)如果兩車改變速度時兩車相距90km,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位要將一份宣傳資料進(jìn)行批量印刷.在甲印刷廠,在收取100元制版費(fèi)的基礎(chǔ)上,每份收費(fèi)0.5元;在乙印刷廠,在收取40元側(cè)版費(fèi)的基礎(chǔ)上,每份收費(fèi)0.7元.設(shè)該單位要印刷此宣傳資料份(為正整數(shù)).
(Ⅰ)根據(jù)題意,填寫下表:
印劇數(shù)量(份) | 150 | 250 | 350 | 450 | … |
甲印刷廠收費(fèi)(元) | 175 | ① | 275 | ② | … |
乙印刷廠收費(fèi)(元) | 145 | 215 | ③ | 355 | … |
(Ⅱ)設(shè)在甲印刷廠收費(fèi)元,在乙印刷廠收費(fèi)元,分別寫出,關(guān)于的函數(shù)解析式;
(Ⅲ)當(dāng)時,在哪家印刷廠花費(fèi)少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于⊙,點(diǎn)在上,,過點(diǎn)作⊙的切線,分別交,的延長線于點(diǎn),.
(1)求證:;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt∠AOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過點(diǎn)C作DE⊥OC,分別交OA,OB于點(diǎn)D,E,以FM為對角線作菱形FGMH.已知∠DFE=∠GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( )
A. y= B. y= C. y=2 D. y=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】筆直的海岸線上依次有A,B,C三個港口,甲船從A港口出發(fā),沿海岸線勻速駛向C港口,1小時后乙船從B港口出發(fā),沿海岸線勻速駛向A港口,兩船同時到達(dá)目的地.甲船的速度是乙船的1.25倍,甲、乙兩船與B港口的距離y(km)與甲船行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.給出下列說法:①A,B港口相距400km;②甲船的速度為100km/h;③B,C港口相距200km;④乙船出發(fā)4h時,兩船相距220km.其中正確的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com