【題目】如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°
(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;
(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;
(3)如圖4,當△ABO是任意三角形時,設∠OAD=α,∠OBC=β,
①試探究α、β之間存在的數量關系?
②結論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.
【答案】(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.
【解析】
(1)作OH⊥AB于H,根據線段垂直平分線的性質得到OD=OA,OB=OC,證明△OCE≌△OBH,根據全等三角形的性質證明;
(2)證明△OCD≌△OBA,得到AB=CD,根據直角三角形的性質得到OE=CD,證明即可;
(3)①根據等腰三角形的性質、三角形內角和定理計算;
②延長OE至F,是EF=OE,連接FD、FC,根據平行四邊形的判定和性質、全等三角形的判定和性質證明.
(1)作OH⊥AB于H,
∵AD、BC的垂直平分線相交于點O,
∴OD=OA,OB=OC,
∵△ABO是等邊三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是邊CD的中線,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是邊CD的中線,
∴OE=CD,
∴OE=AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延長OE至F,使EF=OE,連接FD、FC,
則四邊形FDOC是平行四邊形,
∴∠OCF+∠COD=180°,,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=FO=AB.
科目:初中數學 來源: 題型:
【題目】在△ABC中,CA=CB,∠ACB=α.點P 是平面內不與點A,C 重合的任意一點,連接AP,將線段AP 繞點P 逆時針旋轉α得到線段DP,連接AD,BD,CP.
(1)猜想觀察:如圖1,當α=60°時,的值是________,直線BD與直線CP相交所成的較小角的度數是________.
(2)類比探究:如圖2,當α=90°時,請寫出的值及直線BD與直線CP相交所成的較小角的度數,并就圖2的情形說明理由.
(3)解決問題:如圖3,當α=90°時,若點 E,F 分別是 CA,CB 的中點,點 P 在FE的延長線上,P,D,C三點在同一直線上,AC與BD相交于點M,DM=2-,求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(a≠0)的圖象在第二象限交于點A(m,2).與x軸交于點C(﹣1,0).過點A作AB⊥x軸于點B,△ABC的面積是3.
(1)求一次函數和反比例函數的解析式;
(2)若直線AC與y軸交于點D,求△BCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.
(1)求證:AE⊥EF;
(2)若圓的半徑為5,BD=6 求AE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數關系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形中,,以為圓心,長為半徑畫,點在上移動,連接,并將繞點逆時針旋轉至,連接.在點移動的過程中,長度的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了拆除震后危樓,抗震減災工作組對所剩部分危樓樓房進行摸排測量.在危樓樓角B點處,測得危樓樓頂A的仰角為60°;沿樓角B點的正前方前進8米到達點C,在離C點2米高的D處測得危樓樓頂A的仰角為30°.請根據以上測量數據,求出樓頂A離地面的高度.(≈1.7,精確到1米)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com