【題目】下列說(shuō)法正確的有____.(只填序號(hào))
①邊數(shù)相等的兩個(gè)正多邊形一定相似;
②已知圓錐的底面半徑是4,母線長(zhǎng)是5,則該圓錐的側(cè)面積是20π;
③3是的平方根;
④若一組數(shù)據(jù)3,x,4,5,6的眾數(shù)是3,則中位數(shù)是3;
⑤任意三角形的外接圓的圓心一定是三角形三條邊的垂直平分線的交點(diǎn).
【答案】①②③⑤
【解析】
要找出正確命題,可運(yùn)用相關(guān)基礎(chǔ)知識(shí)分析找出正確選項(xiàng),也可以通過舉反例排除不正確選項(xiàng),從而得出正確選項(xiàng).
邊數(shù)相等的兩個(gè)正多邊形一定相似,①正確;
已知圓錐的底面半徑是4,母線長(zhǎng)是5,則該圓錐的側(cè)面積是20π,故②正確;
的平方根有-3和3,所以3是的平方根,故③正確;
∵一組數(shù)據(jù)3,x,4,5,6的眾數(shù)是3,
∴x=3,
把這組數(shù)據(jù)按照從小到大的順序排列為:3,3,4,5,6,
最中間的數(shù)是4,則這組數(shù)據(jù)的中位數(shù)為4;
故④錯(cuò)誤;
任意三角形的外接圓的圓心一定是三角形三條邊的垂直平分線的交點(diǎn),⑤正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.
(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;
②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.
(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;
(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球環(huán)境問題已經(jīng)成為我們?nèi)找骊P(guān)注的問題.學(xué)校為了普及生態(tài)環(huán)保知識(shí),提高學(xué)生生態(tài)環(huán)境保護(hù)意識(shí),舉辦了“我參與,我環(huán)保”的知識(shí)競(jìng)賽.以下是從初一、初二兩個(gè)年級(jí)隨機(jī)抽取20名同學(xué)的測(cè)試成績(jī)進(jìn)行調(diào)查分析,成績(jī)?nèi)缦拢?/span>
初一:76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91
初二:74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
(1)根據(jù)上面的數(shù)據(jù),將下列表格補(bǔ)充完整;
整理、描述數(shù)據(jù):
成績(jī)x 人數(shù) 班級(jí) | |||||
初一 | 1 | 2 | 3 | 6 | |
初二 | 0 | 1 | 10 | 1 | 8 |
(說(shuō)明:成績(jī)90分及以上為優(yōu)秀,80~90分為良好,60~80分為合格,60分以下為不合格)
分析數(shù)據(jù):
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
初一 | 84 | 88.5 | |
初二 | 84.2 | 74 |
(2)得出結(jié)論:
你認(rèn)為哪個(gè)年級(jí)掌握生態(tài)環(huán)保知識(shí)水平較好并說(shuō)明理由.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=2,E為BC的中點(diǎn),AF=1,以EF為直徑的半圓與DE交于點(diǎn)G,則劣弧的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生每月零用錢情況,從七、八、九年級(jí)1200名學(xué)生中隨機(jī)抽取部分學(xué)生,對(duì)他們今年4月份的零用錢支出情況進(jìn)行調(diào)查統(tǒng)計(jì)并繪制成如下統(tǒng)計(jì)圖表:
組別 | 零用錢支出x(單位:元) | 頻數(shù)(人數(shù)) | 頻率 |
節(jié)儉型 | x<10 | 2 | 0.05 |
10≤x<20 | 4 | 0.10 | |
富足型 | 20≤x<30 | 12 | |
30≤x<40 | m | ||
奢侈型 | 40≤x<50 | n | |
x≥50 | 2 |
請(qǐng)根據(jù)圖表中所給的信息,解答下列問題:
(1)在這次調(diào)查中共隨機(jī)抽取了 名學(xué)生,圖表中的m= ,n= ;
(2)請(qǐng)估計(jì)該校今年4月份零用錢支出在“30≤x<40范圍的學(xué)生人數(shù);
(3)在抽樣的“節(jié)儉型”學(xué)生中,有2位男生和4位女生,校團(tuán)委計(jì)劃從中隨機(jī)抽取兩人參與“映山紅”的公益活動(dòng),求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是,且經(jīng)過A(﹣4,0),C(0,2)兩點(diǎn),直線l:y=kx+t(k≠0)經(jīng)過A,C.
(1)求拋物線和直線l的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)P作PF⊥AC,垂足為F,當(dāng)△PEF≌△AED時(shí),求出點(diǎn)P的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+x+4的對(duì)稱軸是直線x=3,且與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)以BC為邊作正方形CBDE,求對(duì)角線BE所在直線的解析式;
(3)點(diǎn)P是拋物線上一點(diǎn),若∠APB=45°,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com