【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:
①b2﹣4c>0;②b+c=0;③2b+c+3=0;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0
其中正確的有( )個(gè).
A. 4 B. 3 C. 2 D. 1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為預(yù)防傳染病,某校定期對教室進(jìn)行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時(shí)間成正比例;燃燒后,與成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:
(1)分別求出藥物燃燒時(shí)及燃燒后 關(guān)于的函數(shù)表達(dá)式.
(2)當(dāng)每立方米空氣中的含藥量低于 時(shí),對人體方能無毒害作用,那么從消毒開始,在哪個(gè)時(shí)段消毒人員不能停留在教室里?
(3)當(dāng)室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時(shí)間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,搭一個(gè)正方形需要4根火柴棒,搭2個(gè)正方形需要7根火柴棒,搭3個(gè)正方形需要10根火柴棒.
……
(1)若搭5個(gè)這樣的正方形,這需要 根火柴棒;
(2)若搭n個(gè)這樣的正方形,這需要 根火柴棒;
(3)若現(xiàn)在有2018根火柴棒,要搭700個(gè)這樣的正方形,至少還需要火柴多少根?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
已知張強(qiáng)家.體育場.文具店在同一直線上.下面的圖象反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中x表示時(shí)間,y表示張強(qiáng)離家的距離.據(jù)圖象回答下列問題:
(1)體育場離張強(qiáng)家多遠(yuǎn)?張強(qiáng)從家到體育場用了多少時(shí)間?
(2)張強(qiáng)在文具店停留了多少時(shí)間?
(3)張強(qiáng)從文具店回家平均每分鐘走多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某水庫一周內(nèi)水位高低的變化情況(用正數(shù)記水位比前一日上升數(shù),用負(fù)數(shù)記下降數(shù)).那么本周星期幾水位最低 ( )
A. 星期二B. 星期四C. 星期六D. 星期五
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)小My同學(xué)在網(wǎng)絡(luò)直播課中學(xué)習(xí)了勾股定理,他想把這一知識(shí)應(yīng)用在等邊三角形中:邊長為a的等邊三角形面積是 (用含a的代數(shù)式表示);
(2)小My同學(xué)進(jìn)一步思考:是否可以將正方形剪拼成一個(gè)等邊三角形(不重疊、無縫隙)?
①如果將一個(gè)邊長為2的正方形紙片剪拼等邊三角形,那么該三角形邊長的平方是 ;
②小My同學(xué)按下圖切割方法將正方形ABCD剪拼成一個(gè)等邊三角形EFG:M、N分別為AB、CD邊上的中點(diǎn),P、Q是邊BC、AD上兩點(diǎn),G為MQ上一點(diǎn),且∠MGP=∠PGN=∠NGQ=60°.
請補(bǔ)全圖形,畫出拼成正三角形的各部分分割線,并標(biāo)號(hào);
③正方形ABCD的邊長為2,設(shè)BP=x,則x2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連結(jié)OD、OE、OC,對于下列結(jié)論:
①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CDOA;④.
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,把△ABC繞AC邊的中點(diǎn)M旋轉(zhuǎn)后得△DEF,若直角頂點(diǎn)F恰好落在AB邊上,且DE邊交AB邊于點(diǎn)G,若AC=4,BC=3,則AG的長為( )
A.B.C.D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com