【題目】已知:AB是⊙O的直徑,P是OA上一點,過點P作⊙O的非直徑的弦CD.
(1)若PA=2,PB=10,∠CPB=30°,求CD長;
(2)求證:PCPD=PAPB;
(3)設(shè)⊙O的直徑為8,若PC、PD是方程,求m的范圍.
【答案】(1);(2)詳見解析;(3)
【解析】
(1)連接OC,過點O作OE⊥CD于點E,先求出AB=12,可求OP=4,進(jìn)而由直角三角形的性質(zhì)可求OE的長,再由勾股定理可求EC的長,最后由垂徑定理可求解;
(2)連接AD、CB,通過證明,可得,即可得結(jié)論;
(3)由一元二次方程的根與系數(shù)關(guān)系,可求m的范圍.
(1)如下圖,連接OC,過點O作OE⊥CD于點E
∵PA=2,PB=10
∴AB= 12
∴OA=OB=OC=6
∴OP=4
∵∠CPB=30°,OE⊥CD
∴CE=DE,PO=2OE
∴OE=2
∵EC=
∴CD=
(2)如下圖:連接AD、CB
∵
∴∽
∴
∴
(3)∵PC、PD是方程的兩根
∴
∴
∵CD是非直徑的弦
∴
∴
∵PC、PD是方程的兩根
∴
∴或
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程與方法,探究函數(shù)的圖象與性質(zhì)列表:
描點:在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點,如圖所示:
(1)請補(bǔ)全函數(shù)圖象:
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時,y隨x的增大而_________;(填“增大”或“減小”)
②圖象關(guān)于點__________中心對稱.(填點的坐標(biāo))
③當(dāng)時,的最小值是_________.
(3)結(jié)合函數(shù)圖象,當(dāng)時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別是邊AD,BC的中點,AC分別交BE,DF于G,H,試判斷下列結(jié)論:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四邊形GHDE=2:3,其中正確的結(jié)論是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線L1:過點C(0,﹣3),與拋物線L2:的一個交點為A,且點A的橫坐標(biāo)為2,點P、Q分別是拋物線L1、拋物線L2上的動點.
(1)求拋物線L1對應(yīng)的函數(shù)表達(dá)式;
(2)若以點A、C、P、Q為頂點的四邊形恰為平行四邊形,求出點P的坐標(biāo);
(3)設(shè)點R為拋物線L1上另一個動點,且CA平分∠PCR,若OQ∥PR,求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可以通過下列步驟估計方程x2﹣2x﹣2=0方程的根所在的范圍.
第一步:畫出函數(shù)y=x2﹣2x﹣2=0的圖象,發(fā)現(xiàn)函數(shù)圖象是一條連續(xù)不斷的曲線,且與x軸的一個交點的橫坐標(biāo)在0,﹣1之間.
第二步:因為當(dāng)x=0時,y=﹣2<0,當(dāng)x=﹣1時,y=1>0,
所以可確定方程x2﹣2x﹣2=0的一個根x1所在的范圍是﹣1<x1<0
第三步:通過取0和﹣1的平均數(shù)縮小x1所在的范圍:
取x=,因為當(dāng)x=對,y<0.又因為當(dāng)x=﹣1時,y>0,所以
(1)請仿照第二步,通過運(yùn)算驗證方程x2﹣2x﹣2=0的另一個根x2所在的范圍是2<x2<3
(2)在2<x2<3的基礎(chǔ)上,重復(fù)應(yīng)用第三步中取平均數(shù)的方法,將x2所在的范圍縮小至a<x2<b,使得.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
問題情境:矩形旋轉(zhuǎn)中的數(shù)學(xué)
已知在矩形中,,,以點為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形,旋轉(zhuǎn)角為,得到矩形,點、點、點的對應(yīng)點分別為點、點、點.
操作猜想:
(1)如圖①,當(dāng)點落在邊上時,求線段的長度;
深入探究:
(2)如圖②,當(dāng)點落在線段上時,與相交于點,連接,求線段的長度;
(3)請從,兩題中任選一題作答,我選______題.
題:如圖③,設(shè)點為邊的中點,連接,,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
題:如圖④,設(shè)點為矩形對角線交點,連接,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象與性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)函數(shù)的自變量的取值范圍是_________.
(2)下表是與的幾組對應(yīng)值.
… | 0 | 2 | 3 | 4 | 5 | … | ||||||
… | … |
則表格中的__________.
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表格中各組對應(yīng)值為坐標(biāo)的點,請根據(jù)描出的點,畫出該函數(shù)的圖象;試寫出該函數(shù)的一條性質(zhì)________________________________________________________.
(4)①當(dāng)直線與函數(shù)的圖象有唯一交點時,的值為___________;
②若直線與函數(shù)無交點,則的取值范圍為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時,健康生活一輩子”,為了選拔“陽光大課堂”領(lǐng)操員校組織初中三個年級推選出來的15名領(lǐng)操員進(jìn)行比賽,成績?nèi)缦卤恚?/span>
成績/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 2 | 5 | 4 | 4 |
若任意選擇一名領(lǐng)操員的可能性相同
(1)任意選取一名領(lǐng)操員,選到成績最低領(lǐng)操員的概率是_________.
(2)已知獲得10分的選手中,七、八、九年級分別有1人,2人,1人,學(xué)校準(zhǔn)備從中隨機(jī)選取兩人領(lǐng)操,求恰好選到八年級兩名領(lǐng)操員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與軸交于點,與軸交于點,且經(jīng)過點.
求此二次函數(shù)的解析式;
將此二次函數(shù)的解析式寫成的形式,并直接寫出頂點坐標(biāo)以及它與軸的另一個交點的坐標(biāo).
利用以上信息解答下列問題:若關(guān)于的一元二次方程(為實數(shù))在的范圍內(nèi)有解,則的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com