【題目】在四邊形ABCD中,點(diǎn)E、F分別是ABAD邊上一點(diǎn),∠DFC2FCE

1)如圖1,若四邊形ABCD是正方形,∠DFC60°BE4,則AF   

2)如圖2,若四邊形ABCD是菱形,∠A120°,∠DFC90°BE4,求的值.

3)如圖3,若四邊形ABCD是矩形,點(diǎn)EAB的中點(diǎn),CE12,CF13,求的值.

【答案】1;(2;(3

【解析】

1)根據(jù)含30°的直角三角形的性質(zhì)解答即可;

2)過(guò)EEGBC,利用含30°的直角三角形的性質(zhì)和等腰直角三角形的性質(zhì)進(jìn)行解答即可;

3)延長(zhǎng)FECB延長(zhǎng)線于點(diǎn)M,再利用相似三角形的性質(zhì)和勾股定理進(jìn)行解答.

解:(1)∵四邊形ABCD是正方形,∠DFC60°,

∴∠DCF30°

∵∠DFC2FCE,

∴∠FCE=∠ECB30°

DF4,

故答案為:

2)過(guò)EEGBC,如圖1

∵∠DFC90°,∠DFC2FCE,

∴∠FCE=∠BCE45°

∵∠A120°,

∴∠B60°,

BG2,

BCCDABAD

3)延長(zhǎng)FECB延長(zhǎng)線于點(diǎn)M,如圖2

AFEBME中,

∴△AFE≌△BMEASA),

BMAFMEEF,

∵∠DFC2FCE,

CE是∠FCB的角平分線,

CMCF13,

RtMEC中,,

∵∠EMB=∠EMB,∠EBM=∠EBC90°

∴△EMB∽△EMC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=10P為射線AB上一點(diǎn),連接PD、AC,且PDAC交于點(diǎn)E,過(guò)點(diǎn)AAF⊥PD,垂足為點(diǎn)F

(1)當(dāng)點(diǎn)F落在BC邊上時(shí),求AP的值

(2)當(dāng)△PAE為等腰三角形時(shí),求AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,CDABDAC,BD4

1)求證:△ACD∽△ABC;

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線與直線相交于點(diǎn)(點(diǎn)在第一象限),其橫坐標(biāo)為2.

1)求的值;

2)若兩個(gè)圖像在第三象限的交點(diǎn)為,則點(diǎn)的坐標(biāo)為 ;

3)點(diǎn)為此反比例函數(shù)圖像上一點(diǎn),其縱坐標(biāo)為3,過(guò)點(diǎn),交軸于點(diǎn),直接寫(xiě)出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘船以40km/h的速度沿既定航線由西向東航行,途中接到臺(tái)風(fēng)警報(bào),某臺(tái)風(fēng)中心正以20km/h的速度由南向北移動(dòng),距臺(tái)風(fēng)中心200km的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)影響區(qū).當(dāng)這艘輪船接到臺(tái)風(fēng)警報(bào)時(shí),它與臺(tái)風(fēng)中心的距離BC500km,此時(shí)臺(tái)風(fēng)中心與輪船既定航線的最近距離BA300km

1)如果這艘輪船不改變航向,經(jīng)過(guò)9小時(shí),輪船與臺(tái)風(fēng)中心相距多遠(yuǎn)?它此時(shí)是否受到臺(tái)風(fēng)影響?

2)如果這艘輪船會(huì)受到臺(tái)風(fēng)影響,那么從接到警報(bào)開(kāi)始,經(jīng)過(guò)多長(zhǎng)時(shí)間它就會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市茶葉專賣(mài)店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣(mài)店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:

1)每千克茶葉應(yīng)降價(jià)多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(100),點(diǎn)C、D在以OA為直徑的半圓上,點(diǎn)BOA上,且四邊形OCDB是菱形,則點(diǎn)C的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

1)如圖①,在邊長(zhǎng)為8的等邊三角形ABC中,點(diǎn)D,E分別在BCAC上,且BD2,∠ADE60°,則線段CE的長(zhǎng)為   

問(wèn)題

2)如圖②,已知APBQ,∠A=∠B90°,AB6,D是射線AP上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),E是線段AB上的一個(gè)動(dòng)點(diǎn)(不與AB重合),ECDE,交射線BQ于點(diǎn)C,且AD+DEAB,求BCE的周長(zhǎng).

問(wèn)題解決:

3)如圖③,在四邊形ABCD中,AB+CD10ABCD),BC6,點(diǎn)EBC的中點(diǎn),且∠AED108°,則邊AD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求AD的最大值,并求出此時(shí)ABCD的長(zhǎng)度,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某政府工作報(bào)告中強(qiáng)調(diào),2019年著重推進(jìn)鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個(gè)月的銷售情況,A種湘蓮禮盒進(jìn)價(jià)72元/盒,售價(jià)120元/盒,B種湘蓮禮盒進(jìn)價(jià)40元/盒,售價(jià)80元/盒,這兩種湘蓮禮盒這個(gè)月平均每天的銷售總額為2800元,平均每天的總利潤(rùn)為1280元.

1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?

2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價(jià)每降3元可多賣(mài)1盒.若種湘蓮禮盒的售價(jià)和銷量不變,當(dāng)種湘蓮禮盒降價(jià)多少元/盒時(shí),這兩種湘蓮禮盒平均每天的總利潤(rùn)最大,最大是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案