【題目】如圖,在RtABC中,∠ACB90°,CDABDAC,BD4

1)求證:△ACD∽△ABC

2)求△ABC的面積.

【答案】1)詳見解析;(25

【解析】

1)根據(jù)余角的性質得到∠ACD=∠B,根據(jù)相似三角形的判定定理即可得到結論△ACD∽△ABC;

2)根據(jù)相似三角形的性質得到AB5,根據(jù)勾股定理得到BC2,由三角形的面積公式即可得到結論.

1)證明:∵∠ACB90°,CDAB,

∵∠ACB=∠ADC90°,

∴∠A+B=∠A+ACD90°,

∴∠ACD=∠B,

∴△ACD∽△ABC;

2)解:∵△ACD∽△ABC

,

AB5(負值舍去),

BC2

∴△ABC的面積=ACBC5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),A1B1A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復上述過程;乙在賽道A2B2上以1.5m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復上述過程(不考慮每次折返時的減速和轉向時間).若甲、乙兩人同時出發(fā),設離開池邊B1B2的距離為ym),運動時間為ts),甲游動時,ym)與ts)的函數(shù)圖象如圖(2)所示.

1)賽道的長度是  m,甲的速度是  m/s;當t=   s時,甲、乙兩人第一次相遇,當t=   s時,甲、乙兩人第二次相遇?

2)第三次相遇時,兩人距池邊B1B2多少米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù),探究函數(shù)圖象和性質過程如下:

1)下表是yx的幾組值,則解析式中的m   ,表格中的n   ;

x

5

4

3

2

1

0

1

2

3

4

5

6

y

1

3

4

3

n

0

2)在平面直角坐標系中描出表格中各點,并畫出函數(shù)圖象:

3)若Ax1,y1)、Bx2,y2)、Cx3,y3)為函數(shù)圖象上的三個點,其中x2+x34且﹣1x10x22x34,則y1、y2y3之間的大小關系是   ;

4)若直線yk+1與該函數(shù)圖象有且僅有一個交點,則k的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.

(1)求樹DE的高度;

(2)求食堂MN的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

操作發(fā)現(xiàn):如圖1,在中,,以點為中心,把順時針旋轉,得到;再以點為中心,把逆時針旋轉,得到.連接.的位置關系為平行;

探究證明:如圖2,當是銳角三角形,時,將按照(1)中的方式,以點為中心,把順時針旋轉,得到;再以點為中心,把逆時針旋轉,得到.連接,

①探究的位置關系,寫出你的探究結論,并加以證明;

②探究的位置關系,寫出你的探究結論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1x+ca0)的圖象經過坐標原點O,一次函數(shù)yx4x軸、y軸分別交于點A、B

1c   ,點A的坐標為   

2)若二次函數(shù)ya2﹣(2a+1x+c的圖象經過點A,求a的值.

3)若二次函數(shù)ya2﹣(2a+1x+c的圖象與△AOB只有一個公共點,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生國學經典大賽.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中唐詩且小明抽中宋詞的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,點E、F分別是ABAD邊上一點,∠DFC2FCE

1)如圖1,若四邊形ABCD是正方形,∠DFC60°,BE4,則AF   

2)如圖2,若四邊形ABCD是菱形,∠A120°,∠DFC90°,BE4,求的值.

3)如圖3,若四邊形ABCD是矩形,點EAB的中點,CE12,CF13,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚傳統(tǒng)文化,某校開展了傳承經典文化,閱讀經典名著活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:

收集數(shù)據(jù):

七年級:79,8573,8075,76,87,70,7594,75,79,81,71,75,8086,5983,77

八年級:9274,8782,72,81,94,83,77,83,8081,71,8172,77,8280,70,41

整理數(shù)據(jù):

七年級

0

1

0

a

7

1

八年級

1

0

0

7

b

2

分析數(shù)據(jù):

平均數(shù)

眾數(shù)

中位數(shù)

七年級

78

75

八年級

78

80.5

應用數(shù)據(jù):

(1)由上表填空:a= b= ,c= ,d=

(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?

(3)你認為哪個年級的學生對經典文化知識掌握的總體水平較好,請說明理由.

查看答案和解析>>

同步練習冊答案