【題目】如圖,已知∠AOB30°,點(diǎn)P在邊OA上,OP14,點(diǎn)E,F在邊OB上,PEPF,EF6.若點(diǎn)D是邊OB上一動(dòng)點(diǎn),則∠PDE45°時(shí),DF的長(zhǎng)為_____

【答案】410

【解析】

過點(diǎn)PPHOB于點(diǎn)H,根據(jù)PE=PF,可得EH=FH=EF=3,根據(jù)∠AOB=30°,OP=14,可得PH=OP=7,當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)F右側(cè)或當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)F左側(cè)時(shí),分別計(jì)算可得DF的長(zhǎng).

解:如圖,過點(diǎn)PPHOB于點(diǎn)H,

PEPF,

EHFHEF3,

∵∠AOB30°,OP14,

PHOP7,

當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)F右側(cè)時(shí),

∵∠PDE45°,

∴∠DPH45°,

PHDH7,

DFDHFH734;

當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)F左側(cè)時(shí),

DFDH+FH7+310

所以DF的長(zhǎng)為410

故答案為410

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀)如圖,是等邊三角形,將直角三角板角頂點(diǎn)放在邊上(點(diǎn)不與點(diǎn)、重合),使兩邊分別交邊、于點(diǎn)、.進(jìn)而可證:

小明的做法是,先證,再證,可證得

(探究)如圖,將等邊三角形沿折痕折疊,使點(diǎn)的對(duì)稱點(diǎn)落在邊上(點(diǎn)不與點(diǎn)、重合),求證:

(應(yīng)用)若圖中的,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,

1)請(qǐng)用尺規(guī)作圖的方法在邊上確定點(diǎn),使得點(diǎn)到邊的距離等于的長(zhǎng);(保留作用痕跡,不寫作法)

2)在(1)的條件下,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

18000

第二周

4臺(tái)

10臺(tái)

31000

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售總收入進(jìn)貨成本)

1)求A、B兩種型號(hào)的空調(diào)的銷售單價(jià);

2)若超市準(zhǔn)備用不多于54000元的金額再采購這兩種型號(hào)的空調(diào)共30臺(tái),求A種型號(hào)的空調(diào)最多能采購多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交ADE,交BA的延長(zhǎng)線于點(diǎn)F.

1)求證:.

2)如果,求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、DO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫出AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB邊上的中線,ECD的中點(diǎn),過點(diǎn)CAB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF

1)求證:CFAD

2)若CACB,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點(diǎn)N,弦CDAM于點(diǎn)E,連按ABBE

1)如圖1,若CDAB,垂足為點(diǎn)F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN

3)如圖3,ABCD,BECD47,AE11,求EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,∠ACB90°,ACBC,MBC邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),連接AM,以點(diǎn)A為中心,將線段AM逆時(shí)針旋轉(zhuǎn)135°,得到線段AN,連接BN

1)依題意補(bǔ)全圖2;

2)求證:∠BAN=∠AMB

3)點(diǎn)P在線段BC的延長(zhǎng)線上,點(diǎn)M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為Q,寫出一個(gè)PC的值,使得對(duì)于任意的點(diǎn)M,總有AQBN,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案