如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線(xiàn)與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.(1)求的值及這個(gè)二次函數(shù)的關(guān)系式;(2)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象交于點(diǎn)E點(diǎn),設(shè)線(xiàn)段PE的長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為,求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;(3)D為直線(xiàn)AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線(xiàn)段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 (1) ∵ 點(diǎn)A(3,4)在直線(xiàn)y=x+m上,∴ 4=3+m.  ∴ m=1.  

        設(shè)所求二次函數(shù)的關(guān)系式為y=a(x-1)2.             ∵ 點(diǎn)A(3,4)在二次函數(shù)y=a(x-1)2的圖象上,        ∴ 4=a(3-1)2,        ∴ a=1.                                

∴ 所求二次函數(shù)的關(guān)系式為y=(x-1)2.    即y=x2-2x+1.                         

(2) 設(shè)P、E兩點(diǎn)的縱坐標(biāo)分別為yP和yE .∴ PE=h=yP-yE =(x+1)-(x2-2x+1) =-x2+3x.                           

   即h=-x2+3x (0<x<3). 

(3) 存在.要使四邊形DCEP是平行四邊形,必需有PE=DC. ∵ 點(diǎn)D在直線(xiàn)y=x+1上,

∴ 點(diǎn)D的坐標(biāo)為(1,2),∴ -x2+3x=2 .即x2-3x+2=0 .           

解之,得  x1=2,x2=1 (不合題意,舍去)   

∴ 當(dāng)P點(diǎn)的坐標(biāo)為(2,3)時(shí),四邊形DCEP是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線(xiàn)y=x+m與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸y上.
(1)求m的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線(xiàn)AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線(xiàn)段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)如圖,已知二次函數(shù)y=-
1
2
x2+mx+3的圖象經(jīng)過(guò)點(diǎn)A(-1,
9
2
).
(1)求該二次函數(shù)的表達(dá)式,并寫(xiě)出該函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)點(diǎn)P(2a,a)(其中a>0),與點(diǎn)Q均在該函數(shù)的圖象上,且這兩點(diǎn)關(guān)于圖象的對(duì)稱(chēng)軸對(duì)稱(chēng),求a的值及點(diǎn)Q到y(tǒng)軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)如圖,已知二次函數(shù)y=ax2+bx+3的圖象過(guò)點(diǎn)A(-1,0),對(duì)稱(chēng)軸為過(guò)點(diǎn)(1,0)且與y軸平行的直線(xiàn).
(1)求該二次函數(shù)的關(guān)系式;
(2)結(jié)合圖象,解答下列問(wèn)題:
①當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?
②當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(2,0),直線(xiàn)y=x+2與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,P為線(xiàn)段AB上一動(dòng)點(diǎn)(除A,B兩端點(diǎn)外),過(guò)P作x軸的垂線(xiàn)與二次函數(shù)的圖象交于點(diǎn)Q設(shè)線(xiàn)段PQ的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x.
(1)求二次函數(shù)的解析式;
(2)求l與x之間的函數(shù)關(guān)系式,并求出l的取值范圍;
(3)線(xiàn)段AB上是否存在一點(diǎn)P,使四邊形PQMA為梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=(x-1)2的圖象的頂點(diǎn)為C點(diǎn),圖象與直線(xiàn)y=x+m的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在y軸上.
(1)求m的值;
(2)點(diǎn)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線(xiàn)AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線(xiàn)段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案