【題目】如圖,,垂足為點(diǎn),相交于點(diǎn).

1)求的度數(shù).

2)求證:

【答案】1)∠E=90°;(2)見(jiàn)解析.

【解析】

1)根據(jù)三角形外角的性質(zhì)和角平分線的定義可得∠CAB+CBA=90°+E,然后在ABC中利用三角形內(nèi)角和定理可列式求出∠E;

2)根據(jù)等角的余角相等可證∠BHC=BAE.

解:(1)∵∠GAB=E+ABE,∠ABF=E+BAE,

∴∠GAB+ABF=E+ABE+E+BAE=E+180°,

∴∠CAB=GAB,∠CBA=ABF,

∴∠CAB+CBA=(∠GAB+ABF=90°+E,

∵∠CAB+CBA+ACB=180°,即90°+E+45°=180°,

∴∠E=90°

2)∵CFBF,

∴∠BFH=90°

∴∠FBH+BHC=90°,

∵∠E=90°,

∴∠BAE+ABE=90°,

又∵∠ABE=FBH,

∴∠BHC=BAE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;

(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCAB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OEOC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OEOB重合時(shí)停止旋轉(zhuǎn).

1)當(dāng)ODOAOC之間,且∠COD=20°時(shí),則∠AOE=______

2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;

3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7COD,試求∠AOE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑畫(huà)弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

(1)求證:OPED;

(2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過(guò)點(diǎn)OOFDE于點(diǎn)F,如圖所示,線段EF的長(zhǎng)度是否隨r的變化而變化?若不變,直接寫(xiě)出EF的值;若變化,直接寫(xiě)出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AOBC的頂點(diǎn)O(0,0),A(﹣1,2),點(diǎn)Bx軸正半軸上按以下步驟作圖:①以點(diǎn)O為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊OA,OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,大于DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)F;③作射線OF,交邊AC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為(  )

A. ﹣1,2) B. ,2) C. (3﹣,2) D. ﹣2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,A′BCABC關(guān)于BC所在直線對(duì)稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長(zhǎng)交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)A′EF為直角三角形時(shí),AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名學(xué)生進(jìn)行射擊練習(xí),兩人在相同條件下各射擊10次,將射擊結(jié)果作統(tǒng)計(jì)分析如下:

命中環(huán)數(shù)

5

6

7

8

9

10

甲命中環(huán)數(shù)的次數(shù)

1

4

2

1

1

1

乙命中環(huán)數(shù)的次數(shù)

1

2

4

2

1

0

平均數(shù)

眾數(shù)

方差

7

6

2.2

1)請(qǐng)你計(jì)算乙學(xué)生的相關(guān)數(shù)據(jù)并填入表中;

2)根據(jù)你所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),利用上述某些數(shù)據(jù)評(píng)價(jià)甲、乙兩人的射擊水平。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,航拍無(wú)人機(jī)從A處測(cè)得一幢建筑物頂部B的仰角為45°,測(cè)得底部C的俯角為60°,此時(shí)航拍無(wú)人機(jī)與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結(jié)果保留整數(shù),≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】,兩地相距240千米,乙車從地駛向地,行駛80千米后,甲車從地出發(fā)駛向地,甲車行駛5小時(shí)到達(dá)地,并原地休息.甲、乙兩車勻速行駛,乙車速度是甲車速度的倍.

1)甲車的行駛速度是 千米/時(shí),乙車的行駛速度是 千米/時(shí);

2)求甲車出發(fā)后幾小時(shí)兩車相遇;(列方程解答此問(wèn))

3)若乙車到達(dá)地休息一段時(shí)間后按原路原速返回,且比甲車晚1小時(shí)到達(dá)地.乙車從地出發(fā)到返回地過(guò)程中,乙車出發(fā) 小時(shí),兩車相距40千米.

查看答案和解析>>

同步練習(xí)冊(cè)答案