【題目】對于及一個矩形給出如下定義:如果上存在到此矩形四份頂點距離都相等的點,那么稱是該矩形的等距圓,如圖,平面直角坐標系中,矩形的頂點坐標為,頂點軸上,,且的半徑為

1)在,,中可以成為矩形等距圓的圓心的是__________

2)如果點在直線上,且是矩形的等距圓,那么點的坐標為__________

【答案】

【解析】

1)連接ACBD相交于點E,根據(jù)矩形的性質(zhì)可得矩形的中心E點坐標為(0,1),再利用兩點間的距離公式分求得P1EP2E、PE3,然后根據(jù)⊙P的半徑即可確定;

2)設Pt,),根據(jù)兩點間的距離公式可得,解方程求得t,即可確定點P的坐標.

解:(1)如圖:連接AC、BD相交于點E

∵四邊形ABCD為矩形

OC=OD,

,

∴矩形的中心E點坐標為(01

OP的半徑為4.

∴矩形ABCD的“等距圓"的圓心是點P2;

2)設Pt

PE=4

,解t=2t=-2

P點坐標為(2,-1)或(-23).

故答案為點:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點,且對稱軸為直線,其部分圖象如圖所示對于此拋物線有如下四個結(jié)論:①;②;③;④若,則時的函數(shù)值小于時的函數(shù)值其中正確結(jié)論的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與坐標軸的交點為,,,拋物線的頂點為

1)求拋物線的解析式.

2)若為第二象限內(nèi)一點,且四邊形為平行四邊形,求直線的解析式.

3為拋物線上一動點,當的面積是的面積的3倍時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ACB中,∠ACB=90°,CEACB的中線,分別過點A、點CCEAB的平行線,交于點D

(1)求證:四邊形ADCE是菱形;

(2)若CE=4,且∠DAE=60°,求ACB的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,,.折疊該紙片,使點落在線段上,折痕與邊交于點,與邊交于點.

(1)若折疊后使點與點重合,此時__________;

(2)若折疊后使點與邊的中點重合,求的長度;

(3)若折疊后點落在邊上的點為,且使,求此時的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別交x軸、y軸于CD兩點,交反比例函數(shù)圖象于A4),B3m)兩點.

(1)求直線CD的表達式;

(2)E是線段OD上一點,若,求E點的坐標;

(3)請你根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在中,的弦,于點,且的中點,延長于點,連接

()如圖①,若,求的大小;

()如圖②,過點的切線,交的延長線于點.若,求的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是線段--動點,以為直徑作半圓,過點交半圓于點,連接.已知,設兩點間的距離為,的面積為.(當點與點或點重合時,的值為)請根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行探究. (: 本題所有數(shù)值均保留一位小數(shù))

通過畫圖、測量、計算,得到了的幾組值,如下表:

補全表格中的數(shù)值: ; .

根據(jù)表中數(shù)值,繼續(xù)描出中剩余的三個點,畫出該函數(shù)的圖象并寫出這個函數(shù)的一條性質(zhì);

結(jié)合函數(shù)圖象,直接寫出當的面積等于時,的長度約為___ _.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°,CDBE、AE分別交于點P、M.對于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。

A. ①②B. ①②③C. ①②③④D. ①③④

查看答案和解析>>

同步練習冊答案