【題目】隨著人們的生活水平不斷提高,人們越來越注重生活品質(zhì),注重食物營養(yǎng).水果罐頭在保存鮮度和營養(yǎng)方面得天獨厚,僅次于現(xiàn)摘水果,水果罐頭不僅果肉好吃,水果的本色本味完全融入到糖水中,罐頭水的風(fēng)味甚至比果汁還要濃郁.某車間生產(chǎn)以甲、乙兩種水果為原料的某種罐頭,在一次進貨中得知,花費1.8萬元購進的甲種水果與2.4萬元購進的乙種水果質(zhì)量相同,乙種水果每千克比甲種水果多2元.

1)求甲、乙兩種水果的單價;

2)車間將水果制成罐頭投入市場進行售賣,已知一聽罐頭需要甲乙水果各0.5千克,而每聽罐頭的成本除了水果成本之外,其他所有成本是水果成本的的還要多3元.調(diào)查發(fā)現(xiàn),以28元的定價進行銷售,每天只能賣出3000聽,超市對它進行促銷,每降低1元,平均每天可多賣出1000聽,當(dāng)售價為多少元時,利潤最大?最大利潤為多少?

3)若想使得該種罐頭的銷售利潤每天達到6萬元,并且保證降價的幅度不超過定價的15%,每聽罐頭的價錢應(yīng)為多少錢?

【答案】1)甲的單價為6/千克,乙的單價為8/千克;(2)當(dāng)售價為23元時,利潤最大,為64000;(3)售價為25元時,利潤為6萬元

【解析】

1)此題等量關(guān)系為:乙種水果單價=甲種水果的單價+2;根據(jù)花費1.8萬元購進的甲種水果與2.4萬元購進的乙種水果質(zhì)量相同,設(shè)未知數(shù),列方程,然后求出方程的解.2)先求出每聽罐頭的總成本,設(shè)降價m元,根據(jù)題意可得到總利潤Wm的函數(shù)解析式,再將函數(shù)解析式轉(zhuǎn)化為頂點式,然后利用二次函數(shù)的性質(zhì)可求解.3)利用(2)中w=60000,建立關(guān)于m的方程,解方程求出m的值,即可解答問題.

1)設(shè)甲種水果的單價為/千克,則乙種水果的單價為/千克,

由題意可得:,

解得: ,

經(jīng)檢驗,為方程的根且符合題意,

,

甲的單價為6/千克,乙的單價為8/千克;

2)由(1)每聽罐頭的水果成本為:元,

由題,每聽罐頭的總成本為元,

設(shè)降價元,則利潤

,

當(dāng)時,有最大值為64000,

當(dāng)售價為23元時,利潤最大,為64000;

3)由(2)得, ,

解得:3

但是,降價幅度不超過定價的15%,即≤28×15%,

,

,

售價為 ,

答:售價為25元時,利潤為6萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:△BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,弦AB,CD相交于點E,,點D在上,連結(jié)CO,并延長CO交線段AB于點F,連接OA,OB,且OA=2,∠OBA=30°

1)求證:∠OBA=∠OCD

(2)當(dāng)AOF是直角三角形時,求EF的長;

(3)是否存在點F,使得,若存在,請求出EF的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義兩個不相交的函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“和諧值”.

(1)求拋物線yx22x+2x軸的“和諧值”;

(2)求拋物線yx22x+2與直線yx1的“和諧值”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,任意三個格點組成的三角形面積如果不小于1則稱為離心三角形,而如果面積恰好等于1則稱為環(huán)繞三角形是網(wǎng)格圖形中已知的兩個格點,點是另一個格點,且滿足離心三角形,則環(huán)繞三角形的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當(dāng)x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時,y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是08m,但當(dāng)她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測得留在墻壁上的影高為12m,又測得地面的影長為26m,請你幫她算一下,樹高是(

A、325m B、425m C、445m D、475m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yx2+bx3的圖象與x軸分別相交于AB兩點,點B的坐標(biāo)為(3,0),與y軸的交點為C,動點T在射線AB上運動,在拋物線的對稱軸l上有一定點D,其縱坐標(biāo)為2lx軸的交點為E,經(jīng)過AT、D三點作⊙M

1)求二次函數(shù)的表達式;

2)在點T的運動過程中,

DMT的度數(shù)是否為定值?若是,請求出該定值:若不是,請說明理由;

MTAD,求點M的坐標(biāo);

3)當(dāng)動點T在射線EB上運動時,過點MMHx軸于點H,設(shè)HTa,當(dāng)OHxOT時,求y的最大值與最小值(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC,∠BAC90°BC5,AC2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點D

1)求BD的長;

2)連接AD,求∠DAC的正弦值.

查看答案和解析>>

同步練習(xí)冊答案