【題目】數(shù)學課上,陳老師對我們說,如果1條線段將一個三角形分成2個等腰三角形,那么這1條線段就稱為這個三角形的好線,如果2條線段將一個三角形分成3個等腰三角形,那么這2條線段就稱為這個三角形的好好線

(1)如圖,在△ABC中,∠A36°,∠C72°,請你在這個三角形中畫出它的好線,并標出等腰三角形頂角的度數(shù).

(2)如圖,已知△ABC是一個頂角為45°的等腰三角形,請你在這個三角形中畫出它的好好線,并標出所分得的等腰三角形底角的度數(shù).

(應用)

(3)△ABC中,已知一個內(nèi)角為42°,若它只有好線,請你寫出這個三角形最大內(nèi)角的度數(shù):___ ___ (寫出其中兩種情形即可)

【答案】1)見解析;(2)見解析;(3) 84°、103.5°

【解析】

根據(jù)題上對好線,好好線的定義畫出等腰三角形即可

如圖所示:

3)當一個內(nèi)角為42°時,最大內(nèi)角可以為84°、103.5°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關于軸對稱,,是函數(shù)圖象上的兩點,連接,點是函數(shù)圖象上的一點,連接.

(1)求,的值;

(2)求所在直線的表達式;

(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點CCEDBAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,E,F(xiàn),B在同一直線上,點A,DBC異側,AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,則下列結論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點M、 N分別在ABCD上,AM=CN, MNAC交于點O,連接BO,若∠BAC=29°,則∠OBC________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組在學習了函數(shù)及函數(shù)圖象的知識后,想利用此知識來探究周長一定的矩形其邊長分別為多少時面積最大. 請將他們的探究過程補充完整.

(1)列函數(shù)表達式:若矩形的周長為8,設矩形的一邊長為x,面積為y,則有y=____________;

(2)上述函數(shù)表達式中,自變量x的取值范圍是____________;

(3)列表:

x

0.5

1

1.5

2

2.5

3

3.5

y

1.75

3

3.75

4

3.75

3

m

寫出m=____________;

(4)畫圖:在平面直角坐標系中已描出了上表中部分各對應值為坐標的點,請你畫出該函數(shù)的圖象;

(5)結合圖象可得,x=____________時,矩形的面積最大;寫出該函數(shù)的其它性質(一條即可):____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:

一百饅頭一百僧,大僧三個更無爭,

小僧三人分一個,大小和尚得幾。

意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結果正確的是( 。

A. 大和尚25人,小和尚75 B. 大和尚75人,小和尚25

C. 大和尚50人,小和尚50 D. 大、小和尚各100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為y(元),在乙園所需總費用為y(元),y、y之間的函數(shù)關系如圖所示,折線OAB表示y之間的函數(shù)關系.

1)甲采摘園的門票是  元,在乙園采摘草莓超過______后超過部分有打折優(yōu)惠;

2)當采摘量時,采摘多少千克草莓,甲、乙兩家采摘園的總費用相同.

查看答案和解析>>

同步練習冊答案