【題目】如圖,直線y=x+3與兩坐標(biāo)軸交于A,B兩點(diǎn),拋物線y=﹣x2+bx+cA、B兩點(diǎn),且交x軸的正半軸于點(diǎn)C.

(1)直接寫出A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式和頂點(diǎn)D的坐標(biāo);

(3)在拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】(1)B(0,3),A(﹣3,0);(2)拋物線解析式為:y=﹣x2﹣2x+3;頂點(diǎn)D坐標(biāo)為(﹣1,4);(3)存在,符合條件的點(diǎn)P的坐標(biāo)為(﹣1,4)或(2,﹣5).

【解析】試題分析:(1分別令x=0y=0代入y=x+3中可得結(jié)論;

2)利用待定系數(shù)法求二次函數(shù)的解析式,根據(jù)配方法可得頂點(diǎn)D的坐標(biāo)

3)分兩種情況設(shè)點(diǎn)P的坐標(biāo)為(t,﹣t22t+3).根據(jù)兩點(diǎn)距離公式可得AB2=32+32=18,AP2=(t+32+(﹣t22t+32,BP2=t2+(﹣t22t2

①如圖1,如果點(diǎn)B為直角頂點(diǎn),那么AB2+BP2=AP2;

②如圖2如果點(diǎn)A為直角頂點(diǎn),那么AP2+AB2=BP2列方程可得結(jié)論.

試題解析:(1)當(dāng)x=0時(shí),y=3,B0,3),當(dāng)y=0時(shí),x+3=0x=﹣3,A(﹣3,0);

2)把A(﹣30),B0,3)分別代入y=﹣x2+bx+c

,解得 ∴拋物線解析式為y=﹣x22x+3;

頂點(diǎn)D坐標(biāo)為(﹣1,4

3)存在.

設(shè)點(diǎn)P的坐標(biāo)為(t,﹣t22t+3).

A(﹣3,0),B03),AB2=32+32=18,AP2=(t+32+(﹣t22t+32,BP2=t2+(﹣t22t2

當(dāng)△PAB是以AB為直角邊的直角三角形時(shí),可分兩種情況

①如圖1如果點(diǎn)B為直角頂點(diǎn),那么AB2+BP2=AP2

(事實(shí)這里的點(diǎn)P與點(diǎn)D 重合)

18+t2+(﹣t22t2=(t+32+(﹣t22t+32整理得t2+t=0,解得t1=﹣1,t2=0(不合題意舍去),則點(diǎn)P的坐標(biāo)為(﹣1,4);

②如圖2,如果點(diǎn)A為直角頂點(diǎn)那么AP2+AB2=BP218+t+32+(﹣t22t+32=t2+(﹣t22t2,整理得t2+t6=0,解得t1=2,t2=﹣3(不合題意舍去),則點(diǎn)P的坐標(biāo)為(2,﹣5);

綜上所述所有符合條件的點(diǎn)P的坐標(biāo)為(﹣1,4)或(2,﹣5).

另解如圖3,DEy軸于點(diǎn)E發(fā)現(xiàn)∠ABO=DBE=45°

可知頂點(diǎn)D滿足△DAB是直角三角形,這時(shí)點(diǎn)P的坐標(biāo)為(﹣1,4);

PAAB交拋物線于點(diǎn)P,PFx軸于點(diǎn)F發(fā)現(xiàn)∠PAF=APF=45°,PF=AF求出另一點(diǎn)P為(2,﹣5).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)節(jié)約用水,某地推行階梯式水價(jià)計(jì)費(fèi)制,標(biāo)準(zhǔn)如下:每月用水不超過17立方米的按每立方米元計(jì)費(fèi),超過17立方米而未超過30立方米的部分按每立方米元計(jì)費(fèi),超過30立方米的部分按每立方米元計(jì)費(fèi),某戶居民上月用水35立方米,應(yīng)繳水費(fèi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計(jì)算等差數(shù)列5,2,﹣1,﹣4……前n項(xiàng)的和.

問題探究:為解決上面的問題,我們從最簡單的問題進(jìn)行探究.

探究一:首先我們來認(rèn)識(shí)什么是等差數(shù)列.

數(shù)學(xué)上,稱按一定順序排列的一列數(shù)為數(shù)列,其中排在第一位的數(shù)稱為第1項(xiàng),用a1表示:排在第二位的數(shù)稱為第2項(xiàng),用a2表示……排在第n位的數(shù)稱為第n項(xiàng),用an表示.一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫等差數(shù)列的公差,公差通常用字母d表示.如:數(shù)列2,4,6,8,….為等差數(shù)列,其中a12,公差d2

1)已知等差數(shù)列52,﹣1,﹣4,…則這個(gè)數(shù)列的公差d   ,第5項(xiàng)是   

2)如果一個(gè)數(shù)列a1,a2,a3a4,…是等差數(shù)列,且公差為d,那么根據(jù)定義可得到:

a2a1da3a2d,a4a3d,……anan1d,所以a2a1+d,a3a2+da1+2da4a1+3d,……:由此可得an   (用a1d的代數(shù)式表示)

3)對(duì)于等差數(shù)列5,2,﹣1,﹣4,…,an   請(qǐng)判斷﹣2020是否是此等差數(shù)列的某一項(xiàng),若是,請(qǐng)求出是第幾項(xiàng):若不是,說明理由.

探究二:二百多年前,數(shù)學(xué)王子高斯用他獨(dú)特的方法快速計(jì)算出1+2+3+4++100的值.我們從這個(gè)算法中受到啟發(fā),用此方法計(jì)算數(shù)列1,2,3,…,n的前n項(xiàng)和: 可知

4)請(qǐng)你仿照上面的探究方式,解決下面的問題:

a1,a2,a3,…,an為等差數(shù)列的前n項(xiàng),前n項(xiàng)和Sna1+a2+a3++an.證明:Snna1+

5)計(jì)算:計(jì)算等差數(shù)列5,2,﹣1,﹣4…前n項(xiàng)的和Sn(寫出計(jì)算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店老板第一次用1000元購進(jìn)一批文具,很快銷售完畢,第二次購進(jìn)時(shí)發(fā)現(xiàn)每件文具的進(jìn)價(jià)比第一次上漲了2.5元,老板用2500元購進(jìn)了第二批文具,所購進(jìn)文具的數(shù)量是第一次購進(jìn)數(shù)量的2倍,同樣很快銷售完畢,已知兩批文具的售價(jià)均為每件15元.

(1)第二次購進(jìn)了多少件文具?

(2)文具店老板在這兩筆生意中共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)貨價(jià)為每件30元,為了合理定價(jià),先投放市場試銷.據(jù)市場調(diào)查,銷售價(jià)為每件40元時(shí),每周的銷售量是180件,而銷售價(jià)每上漲1元,則每周的銷售量就會(huì)減少5件,設(shè)每件商品的銷售價(jià)上漲x元,每周的銷售利潤為y元.

(1)用含x的代數(shù)式表示:每件商品的銷售價(jià)為   元,每件商品的利潤為   元,每周的商品銷售量為   件;

(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(3)應(yīng)怎樣確定銷售價(jià),使該商品的每周銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=DOC=90°,OE平分∠AOD,反向延長射線OEF.

1)∠AOD和∠BOC是否互補(bǔ)?說明理由;

2)射線OF是∠BOC的平分線嗎?說明理由;

3)反向延長射線OA至點(diǎn)G,射線OG將∠COF分成了43的兩個(gè)角,求∠AOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備印刷一批證書,現(xiàn)有兩個(gè)印刷廠可供選擇:甲廠收費(fèi)方式:收制版費(fèi)1000元,每本印刷費(fèi)0.5元;乙廠收費(fèi)方式:不收制版費(fèi),每本收印刷費(fèi)1.5元;若該校印制證書x.

1)當(dāng)印制證書3000本時(shí),甲廠的收費(fèi)為 元,乙廠的收費(fèi)為 元;

2)請(qǐng)問印刷多少本證書時(shí),甲乙兩廠收費(fèi)相同?

3)你認(rèn)為選擇哪一家印刷廠更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個(gè)根是x1=1,x2=3

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級(jí)聯(lián)賽,某學(xué)校組織了一次體育知識(shí)競賽.每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)得分依次記為100分、90分、80分、70分.學(xué)校將八年級(jí)一班和二班的成績整理并繪制成統(tǒng)計(jì)圖,如圖所示.

(1)把一班競賽成績統(tǒng)計(jì)圖補(bǔ)充完整;

(2)寫出下表中a、b、c的值:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

一班

a

b

90

106.24

二班

87.6

80

c

138.24

(3)根據(jù)(2)的結(jié)果,請(qǐng)你對(duì)這次競賽成績的結(jié)果進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊答案