【題目】如圖所示,二次函數(shù)y=ax2+bx+ca≠0)的圖象,有下列4個(gè)結(jié)論:①abc0;②ba+c;③4a+2b+c0;④b2-4ac0;其中正確的個(gè)數(shù)有(

A. 1B. 2C. 3D. 4

【答案】C

【解析】

①觀察函數(shù)圖象發(fā)現(xiàn):拋物線的開口向下,對稱軸為x=1,拋物線與y軸的交點(diǎn)在y軸正半軸,由此即可得出a0,b=-2a0,c0,從而得出abc0,結(jié)論①不符合題意;②由當(dāng)x=-1時(shí),y0可知a-b+c0,變形后可得出ba+c,結(jié)論②符合題意;③由拋物線的對稱軸為x=1,可知x=0x=2時(shí),y值相等,結(jié)合拋物線與y軸交點(diǎn)在y軸正半軸即可得出4a+2b+c=c0,結(jié)論③符合題意;④由拋物線與x軸有兩個(gè)不同的交點(diǎn)即可得出一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,利用根的判別式即可得出△=b2-4ac0,結(jié)論④符合題意.綜上即可得出結(jié)論.

解:①∵拋物線的開口向下,對稱軸為x=1,拋物線與y軸的交點(diǎn)在y軸正半軸,
, ,
,結(jié)論①不符合題意;
②∵當(dāng)時(shí),
,
,結(jié)論②符合題意;
③∵拋物線的對稱軸為x=1,
∴當(dāng)x=0x=2時(shí),y值相等.
∵拋物線與y軸的交點(diǎn)在y軸正半軸,
4a+2b+c=c0,結(jié)論③符合題意;
④∵拋物線與x軸有兩個(gè)不相等的實(shí)數(shù)根,
∴一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,
,結(jié)論④符合題意.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線軸相交于點(diǎn),.軸交于點(diǎn)C,且O,C兩點(diǎn)之間的距離為3,,點(diǎn)A,C在直線.

1)求點(diǎn)C的坐標(biāo);

2)當(dāng)隨著的增大而增大時(shí),求自變量的取值范圍;

3)將拋物線向左平移個(gè)單位,記平移后隨著的增大而增大的部分為P,直線向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線My=ax2-4ax+a-1a0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),拋物線的頂點(diǎn)為D

1)拋物線M的對稱軸是直線______;

2)當(dāng)AB=2時(shí),求拋物線M的函數(shù)表達(dá)式以及頂點(diǎn)D的坐標(biāo);

3)在(2)的條件下,直線ly=kx+bk0)經(jīng)過拋物線的頂點(diǎn)D,直線y=n與拋物線M有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為x1,x2,直線y=n與直線l的交點(diǎn)的橫坐標(biāo)記為x3x34),若當(dāng)-2n≤-1時(shí),總有x1-x3x3-x20,請結(jié)合函數(shù)的圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸是,且過點(diǎn)(,0),有下列結(jié)論:;②;③;④;⑤;其中正確的結(jié)論個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) yax2+bx+ca≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是(

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種銷售成本為40/千克的水產(chǎn)品,若按50/千克銷售,一個(gè)月可售出500千克,銷售價(jià)每漲價(jià)1元,月銷售量就減少10千克.

1)寫出月銷售利潤(單位:元)與售價(jià)(單位:元/千克)之間的函數(shù)關(guān)系式.

2)商場將在月銷售成本不超過3000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價(jià)應(yīng)定為多少?

3)當(dāng)售價(jià)定為多少元時(shí),會獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度.小正方形的頂點(diǎn)稱為格點(diǎn)的三個(gè)頂點(diǎn),,.

1)將以點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn),得到,請畫出的圖形;

2)平移,使點(diǎn)的對應(yīng)點(diǎn)坐標(biāo)為,請畫出平移后對應(yīng)的

3)若將繞某一點(diǎn)旋轉(zhuǎn)可得到,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);

4)請畫出一個(gè)以為對角線,面積是20的菱形(要求是格點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將拋物線平移到頂點(diǎn)恰好落在直線上,并設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為.

1)求拋物線的解析式(用含、的代數(shù)式表示);

2)如圖②,與拋物線交于、三點(diǎn),,軸,,.

①求的面積(用含的代數(shù)式表示);

②若的面積為1,當(dāng)時(shí),的最大值為-3,求的值.

查看答案和解析>>

同步練習(xí)冊答案