【題目】如圖,某裝修公司要粉刷樓的外墻,需要測(cè)量樓CD的高度.已知在樓的外墻上從樓頂C處懸掛一廣告屏,其高CE2米,測(cè)量員用高為1.7米的測(cè)量器,在A處測(cè)得屏幕底端E的仰角為35°,然后他正對(duì)大樓方向前進(jìn)6米,在B處測(cè)得屏幕頂端C的仰角為45°.請(qǐng)根據(jù)測(cè)量數(shù)據(jù),求樓CD的高度(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,結(jié)果精確到0.l米)

【答案】CD的高度約為22.4米.

【解析】

延長(zhǎng)ABCD交于點(diǎn)F,由∠CBF=45°,可知BF=CF,設(shè)EF=x,則AF=x+8,利用∠EAF的三角函數(shù)值可求出x的值,根據(jù)CD=CE+EF+FD即可求出樓的高度.

延長(zhǎng)ABCD交于點(diǎn)F,則AFCD.

∵∠CBF=45°,CFBF,

CF=BF,

設(shè)EF=x米,則CF=CE+EF=(2+x)米,BF=(2+x)米,

∵在RtAFE中,∠FAE=35°,

EF=AF×tan35°,

x=(6+2+x),

解得x=,

CD=CE+EF+FD=2++1.7=≈22.4(米).

即樓CD的高度約為22.4米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷售增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問(wèn)他降價(jià)多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,CDAB,垂足為D,AF平分∠CAB,CD于點(diǎn)E,CB于點(diǎn)F.AC=6,AB=10,DE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A. 點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).

(1)點(diǎn)M、N運(yùn)動(dòng)_________秒后,AMN是等邊三角形?

(2)點(diǎn)M、NBC邊上運(yùn)動(dòng)時(shí),運(yùn)動(dòng)_______秒后得到以MN為底邊的等腰三角形AMN?

(3)M、N同時(shí)運(yùn)動(dòng)幾秒后,AMN是直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)以一定的速度沿射線CA方向運(yùn)動(dòng),規(guī)定:當(dāng)點(diǎn)E到終點(diǎn)C時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)的時(shí)間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點(diǎn)F運(yùn)動(dòng)的速度也是1cm/s時(shí),求證:DE=DF;

(3)若動(dòng)點(diǎn)F以3cm/s的速度沿射線CA方向運(yùn)動(dòng);在點(diǎn)E、點(diǎn)F運(yùn)動(dòng)過(guò)程中,如果有某個(gè)時(shí)間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請(qǐng)你直接寫(xiě)出時(shí)間x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB 兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量AB 間的距離,但繩子不夠長(zhǎng),請(qǐng)你利用三角形全等的相關(guān)知識(shí)幫他設(shè)計(jì)一種方案測(cè)量出AB間的距離,寫(xiě)出具體的方案,并解釋其中的道理,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】日零時(shí)起,高鐵開(kāi)通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過(guò)人,人均旅游費(fèi)用為元,如果人數(shù)超過(guò)人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.

如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;

現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB的垂直平分線DEBC的延長(zhǎng)線于F,若∠F30°,DE1,則EF的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形小華同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH見(jiàn)方案一),小麗同學(xué)沿矩形的對(duì)角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見(jiàn)方案二).

1你能說(shuō)出小華、小麗所折出的菱形的理由嗎?

2請(qǐng)你通過(guò)計(jì)算比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

同步練習(xí)冊(cè)答案