【題目】在綜合與實(shí)踐活動(dòng)中,活動(dòng)小組對(duì)學(xué)校400米的跑道進(jìn)行規(guī)劃設(shè)計(jì),跑道由兩段直道和兩端是半圓弧的跑道組成.其中400米跑道最內(nèi)圈為400米,兩端半圓弧的半徑為36米.(3.14).

1)求400米跑道中一段直道的長(zhǎng)度;

2)在活動(dòng)中發(fā)現(xiàn)跑道周長(zhǎng)(單位:米)隨跑道寬度(距最內(nèi)圈的距離,單位:米)的變化而變化.請(qǐng)完成下表:

跑道寬度/

0

1

2

3

4

5

跑道周長(zhǎng)/

400

若設(shè)表示跑道寬度(單位:米),表示該跑道周長(zhǎng)(單位:米),試寫出的函數(shù)關(guān)系式:

3)將446米的跑道周長(zhǎng)作為400米跑道場(chǎng)地的最外沿,那么它與最內(nèi)圈(跑道周長(zhǎng)400米)形成的區(qū)域最多能鋪設(shè)道寬為1.2米的跑道多少條?

【答案】1400米跑道中一段直道的長(zhǎng)度為86.96m; 2;(3)最多能鋪設(shè)道寬為1.2米的跑道6條.

【解析】

根據(jù)周長(zhǎng)的意義:直道長(zhǎng)度彎道長(zhǎng)度求出,
跑道寬度增加,就是半圓的半徑增加,依據(jù)圓的周長(zhǎng)公式可求當(dāng)跑道寬度為12、34、5時(shí),跑道的周長(zhǎng),填寫表格并求出函數(shù)關(guān)系式.
依據(jù)關(guān)系式,可求當(dāng)跑道周長(zhǎng)為446米時(shí),對(duì)應(yīng)的跑道的寬度,再根據(jù)每道寬米,求出可以設(shè)計(jì)幾條跑道.

解:(1400米跑道中一段直道的長(zhǎng)度

2)表格如下:

;

3)當(dāng)時(shí),即,

解得:

最多能鋪設(shè)道寬為1.2米的跑道6條.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)寫出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;

(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?

(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】襄陽(yáng)市某農(nóng)谷生態(tài)園響應(yīng)國(guó)家發(fā)展有機(jī)農(nóng)業(yè)政策,大力種植有機(jī)蔬菜.某超市看好甲、乙兩種有機(jī)蔬菜的市場(chǎng)價(jià)值,經(jīng)調(diào)查,這兩種蔬菜的進(jìn)價(jià)和售價(jià)如下表所示:

有機(jī)蔬菜種類

進(jìn)價(jià)(元/

售價(jià)(元/

16

18

1)該超市購(gòu)進(jìn)甲種蔬菜10和乙種蔬菜5需要170元;購(gòu)進(jìn)甲種蔬菜6和乙種蔬菜10需要200元.求,的值;

2)該超市決定每天購(gòu)進(jìn)甲、乙兩種蔬菜共100進(jìn)行銷售,其中甲種蔬菜的數(shù)量不少于20,且不大于70.實(shí)際銷售時(shí),由于多種因素的影響,甲種蔬菜超過(guò)60的部分,當(dāng)天需要打5折才能售完,乙種蔬菜能按售價(jià)賣完.求超市當(dāng)天售完這兩種蔬菜獲得的利潤(rùn)額(元)與購(gòu)進(jìn)甲種蔬菜的數(shù)量)之間的函數(shù)關(guān)系式,并寫出的取值范圍;

3)在(2)的條件下,超市在獲得的利潤(rùn)額(元)取得最大值時(shí),決定售出的甲種蔬菜每千克捐出元,乙種蔬菜每千克捐出元給當(dāng)?shù)馗@海粢WC捐款后的盈利率不低于20%,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的延長(zhǎng)線上,軸,垂足為,與反比例函數(shù)的圖象相交于點(diǎn),連接,

1)求該反比例函數(shù)的解析式;

2)若,設(shè)點(diǎn)的坐標(biāo)為,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店準(zhǔn)備購(gòu)進(jìn)兩種商品,種商品毎件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多20元,用3000元購(gòu)進(jìn)種商品和用1800元購(gòu)進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為80元,種商品每件的售價(jià)定為45元.

1種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?

2)商店計(jì)劃用不超過(guò)1560元的資金購(gòu)進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動(dòng),決定對(duì)每件種商品售價(jià)優(yōu)惠)元,種商品售價(jià)不變,在(2)條件下,請(qǐng)?jiān)O(shè)計(jì)出銷售這40件商品獲得總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某校準(zhǔn)備成立四個(gè)活動(dòng)小組:.聲樂(lè),.體育,.舞蹈,.書畫,為了解學(xué)生對(duì)四個(gè)活動(dòng)小組的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中必須選擇而且只能選擇一個(gè)小組,根據(jù)調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給信息,解答下列問(wèn)題:

1)本次抽樣調(diào)查共抽查了   名學(xué)生,扇形統(tǒng)計(jì)圖中的值是   ;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)喜愛書畫的學(xué)生中有兩名男生和兩名女生表現(xiàn)特別優(yōu)秀,現(xiàn)從這4人中隨機(jī)選取兩人參加比賽,請(qǐng)用列表或畫樹狀圖的方法求出所選的兩人恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是矩形AOBC的對(duì)稱中心,A(0,4),B60),若一個(gè)反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,交AC于點(diǎn)M,則點(diǎn)M的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙C的直徑,M、D兩點(diǎn)在AB的延長(zhǎng)線上,E是⊙C上的點(diǎn),且DE2DB· DA.延長(zhǎng)AEF,使AEEF,設(shè)BF10,cos∠BED=.

(1)求證:△DEB∽△DAE;

(2)DA,DE的長(zhǎng);

(3)若點(diǎn)FB、E、M三點(diǎn)確定的圓上,求MD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78(即最高點(diǎn)OAB的距離為78),跨徑為90(AB=90),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案