【題目】如圖,在△ABC中,∠C=90°,點O、D分別為AB、BC的中點,做⊙O與AC相切于點E,在AC邊上取一點F,使DF=DO.
⑴求證:DF是⊙O切線;⑵若sinB=,CF=2,求⊙O的半徑.
【答案】(1)證明略;(2)⊙O的半徑 .
【解析】
(1)作OG⊥DF于G.連接OE.先證明△OGD≌△DCF得出OG=CD,再證明四邊形CDOE是平行四邊形,得出OG=OE即可解決問題;
(2)由FA,FD是⊙O的切線,推出FG=FE,設FG=FE=x,由△OGD≌△DCF(AAS),推出DG=CF=2,推出OD=DF=2+x,由AC=2OD,CE=OD,推出AE=EC=OD=2+x,由sinB=推出∠A=30°,推出,在Rt△DCF中,根據(jù)DF2=CD2+CF2,構建方程即可解決問題.
(1)證明:作OG⊥DF于G.連接OE.
∵BD=DC,BO=OA,
∴OD∥AC,
∴∠ODG=∠DFC,
∵∠OGD=∠DCF=90°,OD=DF,
∴△OGD≌△DCF(AAS),
∴OG=CD,
∵AC是⊙O的切線,
∴OE⊥AC,
∴∠AEO=∠C=90°,
∴OE∥BC,
∵OD∥CE,
∴四邊形CDOE是平行四邊形,
∴CD=OE,
∴OG=OE,
∴DF是⊙O的切線.
(2)解:∵FA,FD是⊙O的切線,
∴FG=FE,設FG=FE=x,
∵△OGD≌△DCF(AAS),
∴DG=CF=2
∴OD=DF=2+x
∵AC=2OD,CE=OD,
∴AE=EC=OD=2+x
∵sinB=.
∴∠B=60°,
∴∠A=30°,
在Rt△DCF中,∵DF2=CD2+CF2,
解得或
即⊙O的半徑是.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖拋物線y=ax2+bx+與y軸交于點A,與x軸交于點B、點C.連接AB,以AB為邊向右作平行四邊形ABDE,點E落在拋物線上,點D落在x軸上,若拋物線的對稱軸恰好經過點D,且∠ABD=60°,則這條拋物線的解析式為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】哈市某中學為了豐富校園文化生活.校學生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學生都參加.且只能參加一項比賽.圍繞“你參賽的項目是什么?(只寫一項)”的問題,校學生會在全校范圍內隨機抽取部分學生進行問卷調查。將調查問卷適當整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計算補全條形統(tǒng)計圖;
(2)在這次調查中,一共抽取了多少名學生?
(3)如果全校有680名學生,請你估計這680名學生中參加演講比賽的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=2,BC=5,點I為△ABC的內心,將∠BAC平移,使其頂點與點I重合,則圖中陰影部分的周長為( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海上有A、B、C三座小島,小島B在島A的正北方向,距離為121海里,小島C分別位于島B的南偏東53°方向,位于島A的北偏東27°方向,求小島B和小島C之間的距離.(參考數(shù)據(jù):sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內的一塊面積為的空地進行綠化,一部分種草,剩余部分栽花.設種草部分的面積為,種草所需費用(元)與的函數(shù)關系式為,其大致圖象如圖所示.栽花所需費用(元)與的函數(shù)關系式為.
(1)求出,的值;
(2)若種花面積不小于時的綠化總費用為(元),寫出與的函數(shù)關系式,并求出綠化總費用的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸交于兩點(點在點的左側),與軸交于點.
(1)求點的坐標.
(2)當時,經過點的直線與拋物線的另一個交點為.該拋物線在直線上方的部分與線段組成一個新函數(shù)的圖象.請結合圖象回答:若新函數(shù)的最小值大于,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是拋物線上兩點,則y1<y2,其中正確的結論有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織七、八、九年級學生參加“州慶60年,夢想紅河”作文比賽.該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和圖2兩幅不完整的統(tǒng)計圖. 根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;
(2)經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在?希哑吣昙壧氐泉勛魑谋贿x登在?系氖录洖A,其它年級特等獎作文被選登在?系氖录謩e記為B,C,D. 請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com