【題目】某中學組織七、八、九年級學生參加州慶60年,夢想紅河作文比賽.該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和圖2兩幅不完整的統(tǒng)計圖. 根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在?,把七年級特等獎作文被選登在校刊上的事件記為A,其它年級特等獎作文被選登在校刊上的事件分別記為B,C,D. 請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕.

【答案】(1)126;補全條形統(tǒng)計圖見解析;(2)

【解析】(1)求出總的作文篇數(shù),即可得出九年級參賽作文篇數(shù)對應的圓心角的度數(shù);求出八年級的作文篇數(shù),補全條形統(tǒng)計圖即可;

(2)假設4篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文.用列表法或畫樹狀圖法,即可得出答案.

解:(1126;補全條形統(tǒng)計圖如圖

2)七年級特等獎作文被選登在?系氖录洖A,其它特等獎作文被選登

在?系氖录謩e記為BC,D.

列表:

(或畫樹狀圖)

∴共有12種等可能的結果,其中事件A出現(xiàn)的結果有6

PA==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“新冠肺炎”肆虐,無數(shù)抗疫英雄涌現(xiàn),以下四位抗疫英雄是鐘南山、李蘭娟、李文亮、張定宇(依次記為A、BC、D).為讓同學們了解四位的事跡,老師設計如下活動:取四張完全相同的卡片,分別寫上AB、CD四個標號,然后背面朝上放置,攪勻后每個同學從中隨機抽取一張,記下標號后放回,老師要求每位同學依據(jù)抽到的卡片上的標號查找相應抗疫英雄的資料,并做成小報.

1)班長在四種卡片中隨機抽到標號為C的概率為   

2)平平和安安兩位同學抽到的卡片是不同英雄的概率是多少?用樹狀圖或列表的方法表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3經過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如圖1,過點PPEy軸于點E.求PAE面積S的最大值;

(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,內接于以為直徑的中,且點的內心,的延長線與交于點,與交于點的切線的延長線于點

1)試判斷的形狀,并給予證明;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全教育是學校必須開展的一項重要工作.某校為了了解家長和學生參與暑期安全知識學習的情況,進行了網上測試,并在本校學生中隨機抽取部分學生進行調查.若把參與測試的情況分為類情形:.僅學生自己參與;.家長和學生一起參與;.僅家長自己參與;.家長和學生都未參與.根據(jù)調查情況,繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

在這次抽樣調查中,共調查了 名學生;

補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中類所對應扇形的圓心角的度數(shù);

根據(jù)抽樣調查結果,估計該校名學生中家長和學生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊上的一點,,,將正方形邊沿折疊到,延長.連接,現(xiàn)在有如下四個結論:①;②;③;④; 其中結論正確的個數(shù)是(

A.1B.2

C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,于點E,于點D,BEAD相交于F

求證:;

,AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(1)班學生即將所穿校服型號情況進行摸底調查,并根據(jù)調查結果繪制如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

根據(jù)以上信息,解答下列問題:

1)該班共有多少名學生?

2)在條形統(tǒng)計圖中,請把空缺部分補充完整;在扇形統(tǒng)計圖中,請計算185型校服所對應的扇形圓心角的大。

3)求該班學生所穿校服型號的眾數(shù)和中位數(shù).如果該高中學校準備招收2000名高一新生,則估計需要準備多少套180型號的校服?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MNAB于點D,交BC于點E.若AC3,AB5,則DE等于_____

查看答案和解析>>

同步練習冊答案