【題目】已知點(diǎn)P是線段MN上一動(dòng)點(diǎn),分別以PM,PN為一邊,在MN的同側(cè)作△APM,△BPN,并連接BM,AN

(Ⅰ)如圖1,當(dāng)PMAP,PNBP且∠APM=∠BPN90°時(shí),試猜想BM,AN之間的數(shù)量關(guān)系與位置關(guān)系,并證明你的猜想;

(Ⅱ)如圖2,當(dāng)△APM,△BPN都是等邊三角形時(shí),(Ⅰ)中BMAN之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,試說(shuō)明理由.

(Ⅲ)在(Ⅱ)的條件下,連接AB得到圖3,當(dāng)PN2PM時(shí),求∠PAB度數(shù).

【答案】(1)BMANBMAN.(2)結(jié)論成立.(3)90°

【解析】

(1)根據(jù)已知條件可證MBP≌△ANP,得出MBAN,∠PAN=∠PMB,再延長(zhǎng)MBAN于點(diǎn)C,得出,因此有BMAN;

(2)根據(jù)所給條件可證MPB≌△APN,得出結(jié)論BMAN;

(3)PB的中點(diǎn)C,連接AC,AB,通過(guò)已知條件推出APC為等邊三角形,∠PAC=∠PCA60°,再由CACB,進(jìn)一步得出∠PAB的度數(shù).

解:(Ⅰ)結(jié)論:BMANBMAN

理由:如圖1中,

MPAP,∠APM=∠BPN90°,PBPN

∴△MBP≌△ANPSAS),

MBAN

延長(zhǎng)MBAN于點(diǎn)C

∵△MBP≌△ANP

∴∠PAN=∠PMB,

∵∠PAN+PNA90°

∴∠PMB+PNA90°,

∴∠MCN180°﹣∠PMB﹣∠PNA90°

BMAN

(Ⅱ)結(jié)論成立

理由:如圖2中,

∵△APM,△BPN,都是等邊三角形

∴∠APM=∠BPN60°

∴∠MPB=∠APN120°

又∵PMPA,PBPN

∴△MPB≌△APNSAS

MBAN

(Ⅲ)如圖3中,取PB的中點(diǎn)C,連接ACAB

∵△APM,△PBN都是等邊三角形

∴∠APM=∠BPN60°PBPN

∵點(diǎn)CPB的中點(diǎn),且PN2PM

∴2PC=2PA=2PMPBPN,

∵∠APC60°

∴△APC為等邊三角形,

∴∠PAC=∠PCA60°

又∵CACB,

∴∠CAB=∠ABC30°,

∴∠PAB=∠PAC+CAB90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+cx軸交于點(diǎn)A30),與y軸交于點(diǎn)B,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A,B

1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

2Mm,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N

①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,PN為頂點(diǎn)的三角形與APM相似,求點(diǎn)M的坐標(biāo);

②點(diǎn)Mx軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)MP,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,PN三點(diǎn)為共諧點(diǎn).請(qǐng)直接寫(xiě)出使得M,PN三點(diǎn)成為共諧點(diǎn)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸相交于、兩點(diǎn)(其中為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)作直線軸于點(diǎn),交拋物線于點(diǎn),點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為(其中、不重合),連接軸于點(diǎn),連接

(1)時(shí),求拋物線的解析式和的長(zhǎng);

如圖時(shí),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是弧CBD 上任意一點(diǎn),AH=2,CH=4.

(1)求⊙O 的半徑r 的長(zhǎng)度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點(diǎn)E,直線MH交⊙O 于點(diǎn) N,連接BNCE于點(diǎn) F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長(zhǎng)分別為ab,c,請(qǐng)你從圖1到圖2,圖2到圖3的變換過(guò)程中,利用幾何圖形的面積關(guān)系,求a,bc之間的等量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC,AD的中點(diǎn),連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=2,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=BC,在ABC外側(cè)作直線CP,點(diǎn)A關(guān)于直線CP的對(duì)稱點(diǎn)為D,連接AD,BD,其中BD交直線CP于點(diǎn)E.

(1)如圖1,ACP=15°.

①依題意補(bǔ)全圖形;

②求∠CBD的度數(shù);

(2)如圖2,若45°<ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;

(2)過(guò)點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;

(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對(duì)稱軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,a、b、c分別是A、B、C的對(duì)邊,下列條件不能判斷ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a(chǎn)=7,b=24,c=25

查看答案和解析>>

同步練習(xí)冊(cè)答案