【題目】如圖,點(diǎn)是菱形對(duì)角線的交點(diǎn),,,連接于點(diǎn)

1)求證:;

2)若菱形的邊長(zhǎng)為2,且,求四邊形的面積.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)通過(guò)證明四邊形OCEB是矩形來(lái)推知OE=CB,根據(jù)是菱形,對(duì)角線垂直平分,已知,可得四邊形OCEB是平行四邊形,由此即可推得四邊形OCEB是矩形.

2)已知四邊形ABCD是菱形,,根據(jù)菱形的性質(zhì)即可求得OCOD的長(zhǎng),即可求出四邊形的面積.

1)∵四邊形ABCD是菱形,

ACBD

CEBD,EBAC
∴四邊形OCEB是平行四邊形,
∴四邊形OCEB是矩形,
OE=CB;

2)∵四邊形ABCD是菱形

OA=OC,OD=OB,∠CDO=ODA=CDA=30°

∴在RtCOD中,OC=CD=1

∵四邊形OCEB是矩形

S四邊形OCEB=OC×OB=1×=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于點(diǎn)O.

(1)求證:OE=OF;

(2)若點(diǎn)OCD的中點(diǎn),求證:四邊形DECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FBFC

1)求證:四邊形ABFC是菱形;

2)若AD=,BE=1,求半圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AB3cm,AC3 cm,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿AB1cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)D出發(fā),沿DA2cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng).若△AMN與△ACD相似,則運(yùn)動(dòng)的時(shí)間t_____s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y關(guān)于x的函數(shù)表達(dá)式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當(dāng)時(shí),yx的增大而增大

C.無(wú)論a為何值時(shí),函數(shù)圖象一定經(jīng)過(guò)點(diǎn)

D.無(wú)論a為何值時(shí),函數(shù)圖象與x軸都有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn),頂點(diǎn)為M

1)求拋物線的解析式和點(diǎn)M的坐標(biāo);

2)點(diǎn)E是拋物線段BC上的一個(gè)動(dòng)點(diǎn),設(shè)的面積為S,求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以A、P、C為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線軸交于兩點(diǎn),頂點(diǎn)為

1)當(dāng),時(shí),求線段的長(zhǎng)度;

2)當(dāng),若點(diǎn)軸的距離與點(diǎn)軸的距離相等,求該拋物線的解析式;

3)若,當(dāng)時(shí),的最大值為2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為上,上一動(dòng)點(diǎn),軸上一定點(diǎn),當(dāng)點(diǎn)點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過(guò)點(diǎn)A,作ABx軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△CBD,若點(diǎn)B的坐標(biāo)為(4,0),則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案