【題目】為了提倡節(jié)約用電,某地區(qū)規(guī)定每月用電量不超過 a 千瓦·時,居民生活用電基本價格為每千瓦時 0.5 元;若每月用電量超過 a 千瓦·時,則超過部分按基本電價提高 20%收費.居住此地的老李家二月份用電 120 千瓦·時,所交的電費為 66 元.

1)求 a 的值;

2)老李登錄當?shù)貒译娋W(wǎng)網(wǎng)絡(luò)平臺繳費后彈出一個對話框:您的家庭一月份和二月份的平均電費不超過0.54 /千瓦·時,評為節(jié)能小家庭.試計算老李家一月份的用電量的范圍.

【答案】1a=60;(2)老李家一月份的用電量不少于30千瓦時,又不多于80千瓦時.

【解析】

1)先判斷得出a120,然后根據(jù)題意列出方程解出a即可;

(2)設(shè)一月份用電x度,分別討論當x≤60時,當x60時,根據(jù)題意列出不等式求出x的取值范圍即可.

1120×0.5=60(元),

6066

a120,

解得:;

2)設(shè)一月份用電x度,

x≤60時,

,

解得,

,

x60時,

解得,

,

綜上,,

所以老李家一月份的用電量不少于30千瓦時,又不多于80千瓦時.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網(wǎng)絡(luò)教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網(wǎng)絡(luò)對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網(wǎng)絡(luò)教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系內(nèi),已知,過點作互相垂直的兩條直線、 分別交軸于兩點;分別交軸于兩點,已知

1)求的直線解析式;

2)若點軸的負半軸,已知拋物線的對稱軸經(jīng)過點,拋物線與交于對稱軸左側(cè)的點,當時,求拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線yx+2x軸交于點A,與y軸交于點C,與反比例函數(shù)y在第一象限內(nèi)的圖象交于點B1,3),連接BO,下面三個結(jié)論:①SAOB1.5點(x1,y1)和點(x2y2)在反比例函數(shù)的圖象上,若x1x2,則y1y2;不等式x+2的解集是0x1.其中正確的有(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圍棋是中國起源很早的傳統(tǒng)文化游戲之一.它的玩法從草創(chuàng)到現(xiàn)在的樣式,有一個逐漸演變的過程,在一個不透明的罐子里裝有若干個白色的圍棋子,現(xiàn)要估計白棋子的個數(shù),王叔叔從裝黑棋子的罐子里取出10個黑棋子放入白棋子的罐子里.這些棋子除顏色外其他完全相同.將罐子里的棋子攪勻,從中隨機摸出一個棋子,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現(xiàn)有25次摸到黑棋子,請你估計這個罐子里裝有的白棋子有(

A.80B.75C.70D.60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時間(天)變化的圖像如圖所示.則有下列說法:甲工人的工作效率為60/天;②乙工人每天比甲工人少送10件;甲工人一共送420件;④乙比甲少工作2天.其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系內(nèi),拋物線yx24x4x軸交于點AB,與y軸交于點C.頂點為D,對稱軸與x軸的交點為E,連接BD,DC,CE.點P是拋物線在第四象限內(nèi)一點,過點PPHCE,垂足為H.點Fy軸上一點,連接PF并延長交x軸于點G,過點OOMPG,垂足為M

1)當PH取得最大值時,求PE+PF+OF的最小值;

2)當PE+PF+OF取得最小值時,把△OMF繞點O旋轉(zhuǎn)a°(0a360°),記旋轉(zhuǎn)過程中的△OMF為△OMF′.直線MF′與x軸的交點為K.當△OFK是以OK為底的等腰三角形時,直接寫出所有滿足條件的點M′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù)是最大的負整數(shù),且滿足

1a=________,b=________,c=________

2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù)________表示的點重合;

3)點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和3個單位長度的速度向右運動,假設(shè)秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,則________,________.(用含的代數(shù)式表示)

4的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

同步練習冊答案