【題目】如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.
(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;
(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;
(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結(jié)果即可).
【答案】(1)D(0,);(2)C(12﹣6,12﹣18);(3)B'(2+,0),(2﹣,0).
【解析】
(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;
(2)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;
(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為2,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.
(Ⅰ)設(shè)OD為x,
∵點A(3,0),點B(0,),
∴AO=3,BO=
∴AB=6
∵折疊
∴BD=DA
在Rt△ADO中,OA2+OD2=DA2.
∴9+OD2=(﹣OD)2.
∴OD=
∴D(0,)
(Ⅱ)∵折疊
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=12﹣6
∴D(12﹣6,12﹣18)
(Ⅲ)如圖:過點C作CE⊥AO于E
∵CE⊥AO
∴OE=2,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=2,CE=
∵BC=AB﹣AC
∴BC=6﹣2=4
若點B'落在A點右邊,
∵折疊
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=2+
∴B'(2+,0)
若點B'落在A點左邊,
∵折疊
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣2
∴B'(2﹣,0)
綜上所述:B'(2+,0),(2﹣,0)
科目:初中數(shù)學 來源: 題型:
【題目】指出下列問題中的總體、個體、樣本:
(1)為了估計某塊玉米試驗田里的單株平均產(chǎn)量,從中抽取株進行實測;
(2)某學校為了了解學生完成課外作業(yè)的時間,從中抽樣調(diào)查了名學生完成課外作業(yè)的時間進行分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B、C重合),過點C作CN垂直DM交AB于點N,連結(jié)OM、ON、MN.下列五個結(jié)論:①△CNB≌△DMC;②;③ON⊥OM;④若AB=2,則的最小值是1;⑤.其中正確結(jié)論是_________.(只填番號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列4個命題:①兩邊及其中一邊上的中線對應(yīng)相等的兩個三角形全等;②兩邊及其中一邊上的高對應(yīng)相等的兩個三角形全等;③兩邊及一角對應(yīng)相等的兩個三角形全等;④有兩角及其中一角的角平分線對應(yīng)相等的兩個三角形全等.其中正確的的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(點在點的左邊),與軸交于點,連接.
求、、三點的坐標及拋物線的對稱軸;
若已知軸上一點,則在拋物線的對稱軸上是否存在一點,使得是直角三角形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間 x(單位:h)變化的圖象如圖所示,
根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有____個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com