【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

1)當∠BDA=115°時,∠EDC=______°,∠DEC=______°;點DBC運動時,∠BDA逐漸變______(填);

2)當DC等于多少時,ABD≌△DCE,請說明理由;

3)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

【答案】(1)25°,115°,。唬2)當DC=2時,△ABD≌△DCE,理由見解析;(3)見解析.

【解析】

1)根據(jù)∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°-ADB-ADE,進而求出∠DEC的度數(shù),
2)當DC=2時,利用∠DEC+EDC=140°,∠ADB+EDC=140°,求出∠ADB=DEC,再利用AB=DC=2,即可得出ABD≌△DCE,
3)當∠BDA的度數(shù)為110°80°時,ADE的形狀是等腰三角形.

解:(1)∠EDC=180°-ADB-ADE=180°-115°-40°=25°
DEC=180°-EDC-C=180°-40°-25°=115°,
BDA逐漸變小;
故答案為:25°115°,。
2)當DC=2時,ABD≌△DCE
理由:∵∠C=40°,
∴∠DEC+EDC=140°
又∵∠ADE=40°,
∴∠ADB+EDC=140°,
∴∠ADB=DEC,
又∵AB=DC=2
∴△ABD≌△DCEAAS),

3)當∠BDA的度數(shù)為110°80°時,ADE的形狀是等腰三角形,
理由:∵∠BDA=110°時,
∴∠ADC=70°,
∵∠C=40°
∴∠DAC=70°,∠AED=C+EDC=30°+40°=70°
∴∠DAC=AED,
∴△ADE的形狀是等腰三角形;
∵當∠BDA的度數(shù)為80°時,
∴∠ADC=100°,
∵∠C=40°,
∴∠DAC=40°,
∴∠DAC=ADE
∴△ADE的形狀是等腰三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于AB兩點.已知點A的坐標為(4,1),點Pa,b)是雙曲線y1上的任意一點,且0a4

1)分別求出y1y2的函數(shù)表達式;

2)連接PA、PB,得到△PAB,若4ab,求三角形ABP的面積;

3)當點P在雙曲線y1上運動時,設PBx軸于點E,延長PAx軸于點F,判斷PEPF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點左側,B點的坐標為(4,0),與y軸交于C(0,﹣4)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式.

(2)連接PO、PC,并把POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線yax2bxca≠0)的頂點為C1,4),交x軸于AB兩點,交y軸于點 D,其中點B的坐標為(3,0.

1)求拋物線的解析式;

2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使DG、H、F四點所圍成的四邊形周長最小若存在,求出這個最小值及點GH的坐標;若不存在,請說明理由.

3)如圖3,在拋物線上是否存在一點T,過點Tx軸的垂線,垂足為點M,過點MMNBD,交線段AD于點N,連接MD,使△DNM∽△BMD。若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數(shù)和小于12則李燕獲勝;若指針所指區(qū)域內兩數(shù)和等于12,則為平局;若指針所指區(qū)域內兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).

1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結果;

2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解全校1800名學生對學校設置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內隨機抽取了若干名學生.對他們最喜愛的體育項目(每人只選一項)進行了問卷調查,將數(shù)據(jù)進行了統(tǒng)計并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

1)補全頻數(shù)分布直方圖;

2)求扇形統(tǒng)計圖中表示踢毽子項目扇形圓心角的度數(shù).

3)估計該校1800名學生中有多少人最喜愛球類活動?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.

原題如圖①分別在正方形的邊, 連接,,試說明理由.

1思路梳理

因為,所以把繞點逆時針旋轉90°至,可使 重合.因為,所以共線.

根據(jù) ,易證 .請證明.

2類比引申

如圖②,四邊形 , 分別在邊, .都不是直角則當滿足等量關系時, 仍然成立請證明.

3聯(lián)想拓展

如圖③,, ,均在邊,.猜想應滿足的等量關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線BD上的一點,點EAD的延長線上,且∠PAE=E,PECD于點F

1)求證:PC=PE;

2)求∠CPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線,一圓交直線a,b分別于AB、C、D四點,點P是圓上的一個動點,連接PA、PC.

(1)如圖1,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關系為    ;

(2)如圖2,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關系為   

(3)如圖3,求證:∠P=∠PAB+PCD;

(4)如圖4,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關系為    .

查看答案和解析>>

同步練習冊答案