【題目】如圖1,拋物線的頂點(diǎn)A的坐標(biāo)為(14),拋物線與x軸相交于BC兩點(diǎn),與y軸交于點(diǎn)D0,3).

1)求拋物線的表達(dá)式以及點(diǎn)B的坐標(biāo);

2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得DP+CP最小,如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

3)點(diǎn)Q是線段BD上方拋物線上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)Qx軸的垂線,交線段BD于點(diǎn)E,再過(guò)點(diǎn)QQFx軸交拋物線于點(diǎn)F,連結(jié)EF,請(qǐng)問(wèn)是否存在點(diǎn)Q使△QEF為等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

【答案】1y=﹣x2+2x+3;B的坐標(biāo)是(3,0);(2)存在,P的坐標(biāo)是(1,2);(3)存在,點(diǎn)Q的坐標(biāo)為(2,3)或

【解析】

1)根據(jù)頂點(diǎn)坐標(biāo),則設(shè)頂點(diǎn)式,代入點(diǎn)C的坐標(biāo)即可求出拋物線的解析式;令y=0,求得x的值,從而得到點(diǎn)B的坐標(biāo);

(2)根據(jù)軸對(duì)稱的最短路徑問(wèn)題,連接DB交對(duì)稱軸于P,此時(shí)PD+PB=PD+PC的值最小,先求E'F的解析式,它與對(duì)稱軸的交點(diǎn)就是所求的點(diǎn)G;

3)設(shè)Qn,﹣n2+2n+3),則En,﹣n+3),F(﹣n+2,﹣n2+2n+3),所以可以用的代數(shù)式表示QEQF的長(zhǎng),由題意得QEQF即﹣n2+3n|2n2|,即可求得符合題意的的值,從而求得點(diǎn)Q的坐標(biāo).

1)∵拋物線的頂點(diǎn)A的坐標(biāo)為(14),

∴設(shè)拋物線的表達(dá)式為:yax12+4,

把(03)代入得:3a012+4,a=﹣1,

∴拋物線的表達(dá)式為:y=﹣(x12+4=﹣x2+2x+3

y0,﹣(x12+40,解得x13x2=﹣1,

B的坐標(biāo)是(30),C的坐標(biāo)是(﹣1,0);

2)存在,

如圖1,因?yàn)?/span>B,C關(guān)于對(duì)稱軸對(duì)稱,連接BD交對(duì)稱軸于P,此時(shí)DP+CP的值最小,

D03),B3,0),易得BD的解析式為:y=﹣x+3,

當(dāng)x1時(shí),y=﹣1+32,

P的坐標(biāo)是(12);

3)如圖2,存在點(diǎn)Q,使△QEF為等腰直角三角形,

設(shè)Qn,﹣n2+2n+3),則En,﹣n+3),F(﹣n+2,﹣n2+2n+3),

QE=(﹣n2+2n+3)﹣(﹣n+3)=﹣n2+3n,QF|2n2|

QEx軸、QFx軸,

∴∠EQF90°

∴當(dāng)QEQF時(shí),△QEF為等腰直角三角形,即:﹣n2+3n|2n2|

①﹣n2+3n2n2,即:,即:

解得:n1=﹣1(不合題意,舍去),n22,

Q2,3);

②﹣n2+3n=﹣2n+2,即:,

解得:n13(不合題意,舍去),n2

Q,).

綜上,點(diǎn)Q的坐標(biāo)為(23)或(,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】奔跑吧,兄弟!節(jié)目組,預(yù)設(shè)計(jì)一個(gè)新的游戲:奔跑路線需經(jīng)A、B、C、D四地.如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向、在C地北偏西45°方向.C地在A地北偏東75°方向.且BD=BC=30m.從A地到D地的距離是( 。

A. 30m B. 20m C. 30m D. 15m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DEBC于點(diǎn)E.

(1)試判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)過(guò)點(diǎn)DDFAB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是第三象限的拋物線上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ACD的面積為量求出Sm的函數(shù)關(guān)系式,并確定m為何值時(shí)S有最大值,最大值是多少?

(3)若點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),是否存在點(diǎn)P使得∠APC=90°?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且

AOB=60°,反比例函數(shù)k>0)在第一象限內(nèi)過(guò)點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)FBC的中點(diǎn),且SAOF=12 時(shí),OA的長(zhǎng)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全校的科技制作大賽中,王浩同學(xué)用木板制作了一個(gè)帶有卡槽的三角形手機(jī)架.如圖所示,卡槽的寬度DF與內(nèi)三角形ABCAB邊長(zhǎng)相等.已知AC20cm,BC18cm,∠ACB50°,一塊手機(jī)的最長(zhǎng)邊為17cm,王浩同學(xué)能否將此手機(jī)立放入卡槽內(nèi)?請(qǐng)說(shuō)明你的理由(參考數(shù)據(jù):sin50°≈0.8cos50°≈0.6,tan50°≈1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫(huà)圖:

1)將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,畫(huà)出△A1B1C1;

2)畫(huà)出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫(xiě)出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小紅作出了邊長(zhǎng)為1的第1個(gè)等邊,算出了等邊的面積,然后分別取三邊的中點(diǎn)、,作出了第2個(gè)等邊,算出了等邊的面積,用同樣的方法,作出了第3個(gè)等邊,算出了等邊的面積……,由此可得,第個(gè)等邊的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開(kāi)展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書(shū)法社團(tuán)、科技社團(tuán)(分別用字母A,BC,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫(xiě)在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是   

2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再?gòu)氖S嗟目ㄆ须S機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案