【題目】為了了解某校九年級學生的跳高水平,隨機抽取該年級50名學生進行跳高測試,并把測試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).
(1)求a的值,并把頻數(shù)直方圖補充完整;
(2)該年級共有500名學生,估計該年級學生跳高成績在1.29m(含1.29m)以上的人數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)該二次函數(shù)的頂點坐標為__________;
(2)該函數(shù)的圖象與軸的交點坐標為__________;
(3)用五點法畫函數(shù)圖象
… | … | ||||||
… | … |
(4)當時,則的取值范圍是__________;
(5)將該拋物線繞頂點旋轉180°,所得函數(shù)的解析式為__________;
(6)拋物線與軸有且僅有一個交點,則__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線在軸下方上的動點,過點M作MN//軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當MN取最大值時,在拋物線的對稱軸上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;
②3a+b<0;
③;
④;
其中正確的結論是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC內自由移動,若⊙O的半徑為1,且圓心O在△ABC內所能到達的區(qū)域的面積為,則△ABC的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在△ABC中,如果正方形PQMN的邊QM在BC上,頂點P,N分別在AB,AC上,那么我們稱這樣的正方形為“三角形內接正方形”小波同學按數(shù)學家波利亞在《怎樣解題》中的方法進行操作:如圖(2),任意畫△ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內,連結BN′并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN,小波把線段BN稱為“波利亞線”,請幫助小波解決下列問題:
(1)四邊形PQMN是否是△ABC的內接正方形,請證明你的結論;
(2)若△ABC為等邊三角形,邊長BC=6,求△ABC內接正方形的邊長;
(3)如圖(3),若在“波利亞線”BN上截取NE=NM,連結EQ,EM.當時,猜想∠QEM的度數(shù),并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,為坐標原點.直線與拋物線同時經過.
(1)求的值.
(2)點是二次函數(shù)圖象上一點,(點在下方),過作軸,與交于點,與軸交于點.求的最大值.
(3)在(2)的條件下,是否存在點,使和相似?若存在,求出點坐標,不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校七年級學生作業(yè)時間情況,隨機抽取了該校七年級部分學生進行調查,并根據(jù)調查結果繪制了如下的統(tǒng)計圖.
作業(yè)時間分組表(單位:小時)
別 | 作業(yè)時間 | 人數(shù) | 頻率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小計 | a | 1 |
(1)統(tǒng)計圖中的a=______;b=______;m=______;n=______.
(2)求出C組的扇形的圓心角度數(shù).
(3)如果該校七年級學生共400名,試估計這400名生作業(yè)時間在B組和C組的人數(shù)共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com