一個(gè)正整數(shù)除以5,7,9及11的余數(shù)依次是1,2,3,4,求滿足上述條件的最小的正整數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、對(duì)一個(gè)正整數(shù)作如下操作:如果是偶數(shù)則除以2,如果是奇數(shù)則加1,如此進(jìn)行直到1時(shí)操作停止,求經(jīng)過9次操作變?yōu)閘的數(shù)有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)正整數(shù)除以5,7,9及11的余數(shù)依次是1,2,3,4.求滿足上述條件的最小的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

中國(guó)剩余定理,此定理源于我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》,其中記載了這樣一個(gè)“物不知數(shù)”的問題:“今有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”這個(gè)問題的意思是:有一個(gè)正整數(shù),除以3余2,除以5余3,除以7余2,求符合條件的正整數(shù).此問題及其解題原理在世界上頗負(fù)盛名,中外數(shù)學(xué)家們稱之為“孫子定理”、“中國(guó)剩余定理”或“大衍求一術(shù)”等.對(duì)以上“物不知數(shù)”的問題,求得滿足條件的最小正整數(shù)為
23
23
,而滿足條件的所有正整數(shù)可用代數(shù)式表示為
105k+23(k為非負(fù)整數(shù))
105k+23(k為非負(fù)整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)正整數(shù)除以5,7,9及11的余數(shù)依次是1,2,3,4.求滿足上述條件的最小的正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案