【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則cos∠AOD=___.
【答案】
【解析】
設(shè)右下角頂點(diǎn)為點(diǎn)F,取DF的中點(diǎn)E,連接BE,AE,由點(diǎn)B為CF的中點(diǎn)、點(diǎn)E為DF的中點(diǎn)可得出BE∥CD,進(jìn)而可得出∠AOD=∠ABE,在△ABE中,由AB2=AE2+BE2可得出∠AEB=90°,再利用余弦的定義即可求出cos∠ABE的值,此題得解.
解:設(shè)右下角頂點(diǎn)為點(diǎn)F,取DF的中點(diǎn)E,連接BE,AE,如圖所示.
∵點(diǎn)B為CF的中點(diǎn),點(diǎn)E為DF的中點(diǎn),
∴BE∥CD,
∴∠AOD=∠ABE.
在△ABE中,AB=,AE=2,BE=,
∵AB2=AE2+BE2,
∴∠AEB=90°,
∴cos∠ABE==
∴cos∠AOD=
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,⊙O1與x軸相切于點(diǎn)A(﹣3,0),與y軸相交于B、C兩點(diǎn),且BC=8,連接AB.
(1)求證:∠ABO1=∠ABO;
(2)求AB的長;
(3)如圖2,⊙O2經(jīng)過A、B兩點(diǎn),與y軸的正半軸交于點(diǎn)M,與O1B的延長線交于點(diǎn)N,求出BM﹣BN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a<0<b)的圖像與x軸只有一個交點(diǎn),下列結(jié)論:①x<0時,y隨x增大而增大;②a+b+c<0;③關(guān)于x的方程ax2+bx+c+2=0有兩個不相等的實(shí)數(shù)根.其中所有正確結(jié)論的序號是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于,是的直徑,平分,過點(diǎn)作于點(diǎn).
(1)求證:是的切線;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC.
(1)用無刻度的直尺和圓規(guī)作△ABC的外接圓;(保留畫圖痕跡)
(2)若AB=10,BC=16,求△ABC的外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用函數(shù)圖象探究方程x(|x|﹣2)=的實(shí)數(shù)根的個數(shù).
(1)設(shè)函數(shù)y=x(|x|﹣2),則這個函數(shù)的圖象與直線y=的交點(diǎn)的橫坐標(biāo)就是方程x(|x|﹣2)=的實(shí)數(shù)根.
(2)分類討論:當(dāng)x≤0時,y=﹣x2﹣2x;當(dāng)x>0時,y= ;
(3)在給定的坐標(biāo)系中,已經(jīng)畫出了當(dāng)x≤0時的函數(shù)圖象,請根據(jù)(2)中的解析式,通過描點(diǎn),連線,畫出當(dāng)x>0時的函數(shù)圖象.
(4)在給定的坐標(biāo)系中畫直線y=、觀察圖象可知方程x(|x|﹣2)=的實(shí)數(shù)根有 個.
(5)深入探究:若關(guān)于x的方程2x(|x|﹣2)=m有三個不相等的實(shí)數(shù)根,且這三個實(shí)數(shù)根的和為負(fù)數(shù),則m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點(diǎn),點(diǎn)D在AB的延長線上,∠BCD=∠BAC.
(1)求證:CD是⊙O的切線.
(2)若∠D=30°,BD=2,求⊙O的半徑
(3)在(2)的條件下,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形。
(1)求證AE=CG,并說明理由。
(2)連接AG,若AB=17,DG=13,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國長江、黃河流域植被遭到破壞,導(dǎo)致土地沙化,洪澇災(zāi)害時有發(fā)生、沿黃某地區(qū)為積極響應(yīng)和支持“保護(hù)母親河”的倡議,在2000年建立了長100km,寬0.5km的防護(hù)林、今年,有關(guān)部門為統(tǒng)計這一防護(hù)林約有多少棵樹,從中選出10塊(每塊長1km,寬0.5km)統(tǒng)計,數(shù)量如下(單位:棵):65110 63200 64600 64700 67300 63300 65100 66600 62800 65500,根據(jù)以上數(shù)據(jù)可知這一防護(hù)林約有_____棵樹.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com