【題目】在△ABC中,點DAB邊的中點,點EAC中點,點F在邊BC上,AFDE于點G,點HFC的中點,連接GH

1)如圖1,求證:四邊形GHCE是平行四邊形;

2)如圖2,當(dāng)ABAC,點FBC中點時,在不添加任何輔助線的情況下,請直接寫出圖中所有長度等于BF的線段.

【答案】1)見解析;(2)圖中所有長度等于BF的線段為DG,EG,FHCH

【解析】

1)根據(jù)三角形的中位線定理得到點GAF的中點,求得HGCE,根據(jù)平行四邊形的判定定理即可得到結(jié)論;

2)根據(jù)三角形的中位線定理得到DGBF,EGCF,求得DGEGBF,根據(jù)平行四邊形的性質(zhì)得到EGCH,于是得到結(jié)論.

1)∵點DAB邊的中點,點EAC中點,

DEBC,

1,

∴點GAF的中點,

∵點HFC的中點,

HGCE,

GECH,

∴四邊形GHCE是平行四邊形;

2)解:由(1)知,點GAF的中點,

∵點DAB邊的中點,點EAC中點,

DGBF,EGCF

∵點FBC中點,

BFCF,

DGEGBF

∵四邊形GHCE是平行四邊形;

EGCH,

∵點HFC的中點,

CHFHEG,

DGEGFHCHBF,

即圖中所有長度等于BF的線段為DGEG,FH,CH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊正方形,小王連接對角線后,作的平分線交于點,又將繞點順時針方向旋轉(zhuǎn)后到的位置,并延長于點

1)求證:

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線⊙O相切于點D,過圓心OEF∥⊙OE、F兩點,點A⊙O上一點,連接AE,AF,并分別延長交直線B、C兩點;

1)求證:∠ABC+∠ACB=90°

2)若⊙O的半徑,BD=12,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點上,點外一點.于點.連接于點,作于點,交于點,連接

1)求證:的切線;

2)若,,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1 ,在中,邊上一點(不與點重合),將線段繞點逆時針旋轉(zhuǎn)得到,連接

(發(fā)現(xiàn)問題)

1)如圖1 ,通過圖形旋轉(zhuǎn)的性質(zhì),可知_______, 度;

(解決問題)

2)如圖1,證明;

(拓展延伸)

如圖2,在中,外一點,且,仍將線段繞點逆時針旋轉(zhuǎn)得到,連接

3)若求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點,頂點為M,與x軸交于AB兩點,DAB的中點,軸,交拋物線于點E,下列結(jié)論中正確的是(

A.拋物線的對稱軸是直線x=-3B.

C.D.四邊形ADEC是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲經(jīng)銷商庫存有1200A品牌服裝,每套進價400元,售價500元,一年內(nèi)可賣完.現(xiàn)市場流行B品牌服裝,每套進價300元,售價600元,但一年內(nèi)只允許經(jīng)銷商一次性訂購B品牌服裝,一年內(nèi)B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動資金可用,只有低價轉(zhuǎn)讓A品牌服裝,轉(zhuǎn)讓來的資金全部用于購進B品牌服裝,并銷售。經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達成轉(zhuǎn)讓協(xié)議,轉(zhuǎn)讓價格y(元/套)與轉(zhuǎn)讓數(shù)量x(套)之間的函數(shù)關(guān)系式為),若甲經(jīng)銷商轉(zhuǎn)讓xA品牌服裝,一年內(nèi)所獲總利潤為W(元).

1)求轉(zhuǎn)讓后剩余的A品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;

2)求B品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;

3)求W(元)與x(套)之間的函數(shù)關(guān)系式,當(dāng)轉(zhuǎn)讓多少套時,所獲總利潤W最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象如圖所示,對稱軸為直線x=﹣1,經(jīng)過點(0,1)有以下結(jié)論:a+b+c0;b24ac0abc0;④4a2b+c0ca1.其中所有正確結(jié)論的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,AB5cmBC3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線ACBA運動,設(shè)運動時間為t秒(t0).

1)若點PAC上,且滿足PAPB時,求出此時t的值;

2)若點P恰好在∠BAC的角平分線上,求t的值;

3)在運動過程中,直接寫出當(dāng)t為何值時,BCP為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案