【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料,生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克,經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠生產(chǎn)的B產(chǎn)品不少于38件且不多于40件,若希望用于購買甲、乙兩種材料的資金最少,應(yīng)如何安排生產(chǎn)?最少購買資金是多少元?
【答案】(1)甲種材料每千克25元,乙種材料每千克35元;(2)生產(chǎn)A產(chǎn)品22件,B產(chǎn)品38件資金最少.最少9810元
【解析】
(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,根據(jù)“購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元”列出二元一次方程組,求解即可.
(2)設(shè)購買材料的資金為w元,生產(chǎn)B產(chǎn)品a件,根據(jù)題意列出w關(guān)于a的式子,整理可得W是a的一次函數(shù),然后根據(jù)a的取值范圍以及一次函數(shù)的性質(zhì)可得結(jié)果.
解:(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,
依題意得:,
解得:;
答:甲種材料每千克25元,乙種材料每千克35元.
(2)設(shè)購買材料的資金為w元,生產(chǎn)B產(chǎn)品a件,則生產(chǎn)A產(chǎn)品(60﹣a)件.
依題意得:
即W是a的一次函數(shù),
∵k=45>0,
∴W隨a增大而增大
∵38≤a≤40
∴當a=38時,w=45×38+8100=9810元,購買材料的資金最少;
即生產(chǎn)A產(chǎn)品22件,B產(chǎn)品38件資金最少.最少9810元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC=6.D為BC邊一點,且BD∶DC=1∶2,以D為一個頂點作正方形DEFG,且DE=BC,連接AE,將正方形DEFG繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當AE取得最大值時AG的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,BD是⊙O的直徑,AD與BC交于點E,F在DA的延長線上,且BF=BE.
(1)試判斷BF與⊙O的位置關(guān)系,并說明理由;
(2)若BF=6,∠C=30°,求陰影的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A(m,6),B(6,1)在反比例函數(shù)圖象上,作直線AB,連接OA、OB.
(1)求反比例函數(shù)的表達式和m的值;
(2)求△AOB的面積;
(3)如圖2,E是線段AB上一點,作AD⊥x軸于點D,過點E作x軸的垂線,交反比例函數(shù)圖象于點F,若EF=AD,求出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得
.
,
,
直接開平方并整理,得,.
我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.
.
,
.
直接開平方并整理,得,.
上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.
(2)請用“平均數(shù)法”解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們對垃圾分類知識的了解程度,增強同學(xué)們的環(huán)保意識某校數(shù)學(xué)興趣小組設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學(xué)進行了問卷測試,根據(jù)測試成績分布情況,將測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計圖表
問卷測試成績分組表
組別 | 分數(shù)/分 |
A | 60<x≤70 |
B | 70<x≤80 |
C | 80<x≤90 |
D | 90<x≤100 |
(1)本次抽樣調(diào)查的樣本總量是 ;
(2)樣本中,測試成績在B組的頻數(shù)是 ,D組的頻率是 ;
(3)樣本中,這次測試成績的中位數(shù)落在 組;
(4)如果該校共有880名學(xué)生,請估計成績在90<x≤100的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知,在△ABC中,∠BCA=90°,AC=kBC,點D,E分別在邊BC,AC上,且AE=kCD,作線段DF⊥DE,且DE=kDF,連接EF交AB于點G.
(1)如圖1,當k=1時,求證:①∠CED=∠BDF,②AG=GB;
(2)如圖2,當k≠1時,猜想的值,并說明理由;
(3)當k=2,AE=4BD時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com