【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以點(diǎn)O為圓心,以OA1長為半徑畫弧,交直線于點(diǎn)B1.過B1點(diǎn)作B1A2∥y軸,交直線y=2x于點(diǎn)A2,以O為圓心,以OA2長為半徑畫弧,交直線于點(diǎn)B2;過點(diǎn)B2作B2A3∥y軸,交直線y=2x于點(diǎn)A3,以點(diǎn)O為圓心,以OA3長為半徑畫弧,交直線于點(diǎn)B3;過B3點(diǎn)作B3A4∥y軸,交直線y=2x于點(diǎn)A4,以點(diǎn)O為圓心,以OA4長為半徑畫弧,交直線于點(diǎn)B4,…按照如此規(guī)律進(jìn)行下去,點(diǎn)B2020的坐標(biāo)為__________.
【答案】(22020,22019)
【解析】
根據(jù)題意可以求得點(diǎn)B1的坐標(biāo),點(diǎn)A2的坐標(biāo),點(diǎn)B2的坐標(biāo),然后即可發(fā)現(xiàn)坐標(biāo)變化的規(guī)律,從而可以求得點(diǎn)B2020的坐標(biāo).
由題意可得,點(diǎn)A1的坐標(biāo)為(1,2),
設(shè)點(diǎn)B1的坐標(biāo)為(a,a) ,解得,a=2,
∴點(diǎn)B1的坐標(biāo)為(2,1),
同理可得,點(diǎn)A2的坐標(biāo)為(2,4),點(diǎn)B2的坐標(biāo)為(4,2),
點(diǎn)A3的坐標(biāo)為(4,8),點(diǎn)B3的坐標(biāo)為(8,4),
……
∴點(diǎn)B2020的坐標(biāo)為(22020,22019),
故答案為:(22020,22019).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點(diǎn)上,請畫出一個(gè)符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點(diǎn)上.
(3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長交AB于點(diǎn)Q,延長EF交AC于點(diǎn)N.若N為AC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)在線段下方的拋物線上.
①連接、,過點(diǎn)作軸的垂線,垂足為,交于點(diǎn).過點(diǎn)作,垂足為.設(shè)點(diǎn)的橫坐標(biāo)為,線段的長為,用含的代數(shù)式表示;
②過點(diǎn)作,垂足為,連接.是否存在點(diǎn),使得中的一個(gè)角恰好等于的2倍?如果存在,求出點(diǎn)的橫坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的切線,是的直徑,連接交于點(diǎn),在上截取,在中,連接,交于點(diǎn).
(1)求證:;
(2)連接,,當(dāng) 時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,將△ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)得△AEF,其中,E,F是點(diǎn)B,C旋轉(zhuǎn)后的對應(yīng)點(diǎn),BE,CF相交于點(diǎn)D.若四邊形ABDF為菱形,則∠CAE的大小是( )
A.90°B.75°C.60°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若,求∠AED的度數(shù);
(3)若BC=4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的邊DF與邊DM重合時(shí)(如圖2),若,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B在x軸上
(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若sin∠OAB=,求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,直接寫出以點(diǎn)O、M、B為其中三個(gè)頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB為⊙O的直徑,點(diǎn)C,E在⊙O上,,CD⊥AB,垂足為點(diǎn)D,連接BE,弦BE與線段CD相交于點(diǎn)F.
(1)求證:CF=BF;
(2)若cos∠ABE,在AB的延長線上取一點(diǎn)M,使BM=4,⊙O的半徑為6.求證:直線CM是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點(diǎn)A,將點(diǎn)A向右平移2個(gè)單位長度,得到點(diǎn)B.直線與x軸,y軸分別交于點(diǎn)C,D.
(1)求拋物線的對稱軸.
(2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對稱.
①求點(diǎn)B的坐標(biāo).
②若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com