【題目】如圖,已知是的切線,是的直徑,連接交于點,在上截取,在中,連接,交于點.
(1)求證:;
(2)連接,,當 時,四邊形是菱形.
【答案】(1)見解析;(2)30°
【解析】
(1)連接AF,根據(jù)直徑所對的圓周角是直角可得∠AFC=90°,從而得出∠FAC+∠ACF=90°,然后根據(jù)三線合一可得∠BAC=2∠FAC,然后根據(jù)切線的性質可知∠BCE+∠ACF=90°,從而證出結論;
(2)連接OF,根據(jù)題意,易證當△OCF為等邊三角形時,此時OC= FC=FD= OD,即四邊形是菱形,從而求出∠OCF=60°,然后根據(jù)直角三角形的性質即可求出結論.
解:(1)連接AF
∵AC為直徑
∴∠AFC=90°
∴∠FAC+∠ACF=90°
∵
∴∠BAC=2∠FAC
∵是的切線,
∴∠ACB=90°
∴∠BCE+∠ACF=90°
∴∠FAC=∠BCE
∴∠BAC=2∠BCE
(2)連接OF
∵∠CAF=∠EAF
∴FC=FD
∵OC=OD=OF,
∴當△OCF為等邊三角形時,此時OC= FC=FD= OD,即四邊形是菱形
∴∠OCF=60°
∴∠CAF=90°-∠OCF=30°
∴∠CAE=2∠CAF=60°
∴∠B=90°-∠CAE=30°
即當30°時,四邊形是菱形
故答案為:30°.
科目:初中數(shù)學 來源: 題型:
【題目】由于2020年新型冠狀病毒的襲擊,不得不推遲開學,但停課不停學,各地都開展了網課.某中學為了解學生上網課情況,開學后從全校七年級學生中隨機抽取部分學生進行了數(shù)學科目的測試(把測試結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生數(shù)是多少?
(2)求圖1中A級扇形的圓心角∠α的度數(shù),并把圖2中的條形統(tǒng)計圖補充完成;
(3)該中學七年級共有1200名學生,如果全部參加這次數(shù)學科目測試,請估計不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經過市場調查,發(fā)現(xiàn)某種運動服的銷量與售價是一次函數(shù)關系,具體信息如下表:
售價(元/件) | 200 | 210 | 220 | 230 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運動服的進價為每件150元.
(1)售價為元,月銷量為件;
①求關于的函數(shù)關系式;
②若銷售該運動服的月利潤為元,求關于的函數(shù)關系式,并求月利潤最大時的售價;
(2)由于運動服進價降低了元,商家決定回饋顧客,打折銷售,這時月銷量與調整后的售價仍滿足(1)中函數(shù)關系式.結果發(fā)現(xiàn),此時月利潤最大時的售價比調整前月利潤最大時的售價低15元,則的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,連接CP.
(1)如圖1,若∠PCB=∠A.
①求證:直線PC是⊙O的切線;
②若CP=CA,OA=2,求CP的長;
(2)如圖2,若點M是弧AB的中點,CM交AB于點N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店準備購進A、B兩種品牌的文具袋進行銷售,若購進A品牌文具袋和B品牌文具袋各5個共花費120元,購進A品牌文具袋3個和B品牌文具袋4個共花費88元.
(1)求購進A品牌文具袋和B品牌文具袋的單價;
(2)若該文具店購進了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設購進A品牌文具袋x個,獲得總利潤為w元.
①求w關于x的函數(shù)關系式;
②要使銷售文具袋的利潤最大,且所獲利潤不低于進貨價格的45%,請你幫該文具店設計一個進貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1的坐標為(1,2),以點O為圓心,以OA1長為半徑畫弧,交直線于點B1.過B1點作B1A2∥y軸,交直線y=2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線于點B2;過點B2作B2A3∥y軸,交直線y=2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線于點B3;過B3點作B3A4∥y軸,交直線y=2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線于點B4,…按照如此規(guī)律進行下去,點B2020的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點,與y軸交于點C,頂點為D,連接BC
(1)點G是直線BC上方拋物線上一動點(不與B、C重合),過點G作y軸的平行線交直線BC于點E,作GF⊥BC于點F,點M、N是線段BC上兩個動點,且MN=EF,連接DM、GN.當△GEF的周長最大時,求DM+MN+NG的最小值;
(2)如圖2,連接BD,點P是線段BD的中點,點Q是線段BC上一動點,連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點恰好落在線段BQ上,將△AOC繞點O逆時針旋轉60°得到△A′OC′,點T為坐標平面內一點,當以點Q、A′、C′、T為頂點的四邊形是平行四邊形時,求點T的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABE中,∠B=90°,AB=BE,將△ABE繞點A逆時針旋轉45°,得到△AHD,過D作DC⊥BE交BE的延長線于點C,連接BH并延長交DC于點F,連接DE交BF于點O.下列結論:①DE平分∠HDC;②DO=OE;③H是BF的中點;④BC-CF=2CE;⑤CD=HF,其中正確的有( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com