如圖,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,若將AC沿AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長(zhǎng).
∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=
62+82
=10(cm),
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,∠AED=90°,
設(shè)DE=CD=xcm,
∴BE=AB-AE=10-6=4(cm),
在Rt△BDE中,BD2=DE2+BE2,
即(8-x)2=42+x2,
解得:x=3.
故CD的長(zhǎng)為3cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,∠B=∠C=60°,點(diǎn)D、E分別在邊AB、BC上,將△BDE沿直線DE翻折,使點(diǎn)B落在B1處,DB1、EB1分別交邊AC于點(diǎn)F、G.若∠ADF=80°,則∠GEC=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,點(diǎn)D在AC上,將△ADB沿直線BD翻折后,將點(diǎn)A落在點(diǎn)E處,如果AD⊥ED,那么線段DE的長(zhǎng)為( 。
A.1B.
2
C.
2
-1
D.
3
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AD⊥AB,BC⊥AB,且AD=2,BC=3,AB=12,P是線段AB上的一個(gè)動(dòng)點(diǎn),連接PD,PC

(1)設(shè)AP=x,用二次根式表示線段PD,PC的長(zhǎng);
(2)設(shè)y=PD+PC,求當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),y的最小值;
(3)利用(2)的結(jié)論,試求代數(shù)式
x2+9
+
(24-x)2+16
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖三角形紙片ABC中,∠A=75°,∠B=60°,將紙片的角折疊,使點(diǎn)C落在△ABC內(nèi),若∠α=35°,則∠β=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,沿AE折疊矩形紙片ABCD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,則tan∠EFC的值為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

我國(guó)重要銀行的商標(biāo)設(shè)計(jì)都融入了中國(guó)古代錢幣的圖案,下列我國(guó)四大銀行的商標(biāo)圖案不是軸對(duì)稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直角三角形紙片的兩直角邊BC、AC的長(zhǎng)分別為6、8,現(xiàn)將△ABC按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE的長(zhǎng)為( 。
A.2B.3C.6.25D.1.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

按下列的題目要求在如圖的平面直角坐標(biāo)系上畫(huà)出相應(yīng)的點(diǎn)和線段,已知每個(gè)方格的邊長(zhǎng)都為1.
(1)在平面直角坐標(biāo)系中描出下列各點(diǎn),并將這些點(diǎn)用線段依次連接起來(lái):(0,0),(3,4),(5,4),(6,3),(6,1.5),(5,0),(6,-1.5),(6,-3),(5,-4),(3,-4),(0,0);
(2)在圖上畫(huà)出(1)中連接起來(lái)的圖形關(guān)于y軸對(duì)稱的圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案