【題目】如圖1,在平面直角坐標(biāo)系中點(diǎn)AB在坐標(biāo)軸上,其中A0a),Bb,0),滿足|a3|+0

1)求點(diǎn)A、B的坐標(biāo);

2)將AB平移到CD,點(diǎn)A對(duì)應(yīng)點(diǎn)C(﹣2,m),若△ABC面積為13,連接CO,求點(diǎn)C的坐標(biāo);

3)在(2)的條件下,求證:∠AOC=∠OAB+OCD;

4)如圖2,若ABCD,點(diǎn)C、D也在坐標(biāo)軸上,點(diǎn)F為線段AB上一動(dòng)點(diǎn)(不包含A、B兩點(diǎn)),連接OFFP平分∠BFO,∠BCP2PCD,試證明:∠COF3P﹣∠OFP(提示:可直接利用(3)的結(jié)論).

【答案】1A03),B40);(2C(﹣2,﹣2);(3)詳見(jiàn)解析;(4)詳見(jiàn)解析.

【解析】

1)利用非負(fù)數(shù)的性質(zhì)求解即可.

2)如圖1中,分別過(guò)點(diǎn)B,Ax軸,y軸的垂線交于點(diǎn)M,過(guò)點(diǎn)CCNAMN.根據(jù)SABCS四邊形MNCBSABMSACN構(gòu)建方程求解即可.

3)利用平行線的性質(zhì),三角形的外角的性質(zhì)求解即可.

4)如圖2中,延長(zhǎng)ABCP的延長(zhǎng)線于M.首先證明∠BCD3(∠CPF﹣∠OFP),再利用結(jié)論∠FOC=∠OFB+BCD,求解即可.

解:(1∵|a3|+0,

∵|a3|≥0,≥0

∴a3,b4

∴A0,3),B4,0).

2)如圖1中,分別過(guò)點(diǎn)B,Ax軸,y軸的垂線交于點(diǎn)M,過(guò)點(diǎn)CCN⊥AMN

∵SABCS四邊形MNCBSABMSACN,

∴133+3m4+2)﹣×2×3m)﹣×3×4,

解得:m=﹣2,

∴C(﹣2,﹣2).

3)如圖1中,設(shè)CDy軸于T

∵AB∥CD,

∠BAO∠ATO

∵∠AOC∠OCD+∠CTO,

∴∠AOC∠OCD+∠BAO

4)如圖2中,延長(zhǎng)ABCP的延長(zhǎng)線于M

∵AM∥CD,

∴∠DCM∠M

∵∠BCP2∠PCD,

∴∠BCD3∠DCM3∠M,

∵∠M∠FPC∠MFP,∠MFP∠OFP

∴∠BCD3∠CPF∠OFP),

∵∠FOC∠OFB+∠BCD

∴∠FOC2∠OFP+3∠CPF3∠OFP,

∴∠FOC3∠CPF∠OFP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E為⊙O上的兩個(gè)點(diǎn),延長(zhǎng)AD至C,使∠CBD=∠BED.

(1)求證:BC是⊙O的切線;
(2)當(dāng)點(diǎn)E為弧AD的中點(diǎn)且∠BED=30°時(shí),⊙O半徑為2,求DF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店計(jì)劃進(jìn)A,B兩種水果共140千克,這兩種水果的進(jìn)價(jià)和售價(jià)如表所示

進(jìn)價(jià)千克

售價(jià)千克

A種水果

5

8

B種水果

9

13

若該水果店購(gòu)進(jìn)這兩種水果共花費(fèi)1020元,求該水果店分別購(gòu)進(jìn)AB兩種水果各多少千克?

的基礎(chǔ)上,為了迎接春節(jié)的來(lái)臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價(jià)出售,那么售完后共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以OA為邊的OAB面積為2,其中點(diǎn)B的橫、縱坐標(biāo)均不超過(guò)4,且都不小于0,在下列敘述中,正確的是:_____.(請(qǐng)寫出所有正確的選項(xiàng))

①若點(diǎn)B的橫坐標(biāo)是4,則滿足條件的點(diǎn)B有且只有1個(gè);

②若點(diǎn)B是整點(diǎn)(即橫、縱坐標(biāo)都是整數(shù)),則滿足條件的點(diǎn)B4個(gè);

③在坐標(biāo)系內(nèi),對(duì)于任意滿足題意的點(diǎn)B,一定存在一點(diǎn)C,使得CAB、COACOB面積相等;

④在坐標(biāo)系內(nèi),存在一個(gè)定點(diǎn)D,使得對(duì)于任意滿足條件的點(diǎn)BDBA、DBO面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實(shí)數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑CD是弦,若AB=10cm,CD=8cm,那么A、B兩點(diǎn)到直線CD的距離之和為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,O是矩形ABCD的對(duì)角線的交點(diǎn),DEAC,CEBD

1)求證:OEDC

2)若∠AOD120°,DE2,求矩形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案