【題目】如圖,AB是⊙O的直徑CD是弦,若AB=10cm,CD=8cm,那么A、B兩點到直線CD的距離之和為 cm.
科目:初中數(shù)學 來源: 題型:
【題目】學習幾何的一個重要方法就是要學會抓住基本圖形,讓我們來做一次研究性學習.
(1)如圖①所示的圖形,像我們常見的學習用品一圓規(guī),我們常把這樣的圖形叫做“規(guī)形圖”.請你觀察“規(guī)形圖”,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說明理由:
(2)如圖②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點O,試探究∠BOC與∠A的關(guān)系;
(3)如圖③,若△ABC中,∠ABO=∠ABC,∠ACO=∠ACB,且BO、CO相交于點O,請直接寫出∠BOC與∠A的關(guān)系式為 _.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中點A、B在坐標軸上,其中A(0,a),B(b,0),滿足|a﹣3|+=0.
(1)求點A、B的坐標;
(2)將AB平移到CD,點A對應點C(﹣2,m),若△ABC面積為13,連接CO,求點C的坐標;
(3)在(2)的條件下,求證:∠AOC=∠OAB+∠OCD;
(4)如圖2,若AB∥CD,點C、D也在坐標軸上,點F為線段AB上一動點(不包含A、B兩點),連接OF,FP平分∠BFO,∠BCP=2∠PCD,試證明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的結(jié)論).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校在疫情期間利用網(wǎng)絡組織了一次防“新冠病毒”知識競賽,評出特等獎10人,優(yōu)秀獎20人.學校決定給所有獲獎學生各發(fā)一份獎品,同一等次的獎品相同.
(1)(列方程組解應用題)若特等獎和優(yōu)秀獎的獎品分別是口罩和溫度計,口罩單價的2倍與溫度計單價的3倍相等,購買這兩種獎品一共花費700元,求口罩和溫度計的單價各是多少元?
(2)(利用不等式或不等式組解應用題)若兩種獎品的單價都是整數(shù),且要求特等獎單價比優(yōu)秀獎單價多20元.在總費用不少于440而少于500元的前提下,購買這兩種獎品時它們的單價有幾種情況,請分別求出每種情況特等獎和優(yōu)秀獎獎品的單價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】夏季空調(diào)銷售供不應求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務,為提高生產(chǎn)效率,工廠加班加點,接到任務的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設第x天生產(chǎn)空調(diào)y臺,直接寫出y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設第x天的利潤為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】研究“擲一枚圖釘,釘尖朝上”的概率,兩個小組用同一個圖釘做試驗進行比較,他們的統(tǒng)計數(shù)據(jù)如下:
擲圖釘?shù)拇螖?shù) | 50 | 100 | 200 | 300 | 400 |
釘尖朝上 的次數(shù) | |||||
第一小組 | 23 | 39 | 79 | 121 | 160 |
第二小組 | 24 | 41 | 81 | 124 | 164 |
(1)請你估計第一小組和第二小組所得的概率分別是多少?
(2)你認為哪一個小組的結(jié)果更準確?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于點E,且DE∥BC.已知AE=2 , AC=3 , BC=6,則⊙O的半徑是( 。
A.3
B.4
C.4
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com