【題目】如圖,AB是⊙O的直徑CD是弦,若AB=10cm,CD=8cm,那么A、B兩點到直線CD的距離之和為 cm.

【答案】6
【解析】解:過O作OG⊥CD于G,連接OC,如圖所示,
∵OG⊥CD,CD=8cm,
∴G為CD的中點,即CG=DG=4cm,
在Rt△OCG中,OC=AB=5cm,CG=4cm,
根據(jù)勾股定理得:

又AE⊥EF,OG⊥EF,BF⊥EF,
∴AE∥OG∥BF,又O為AB的中點,
∴G為EF的中點,即OG為梯形AEFB的中位線,
∴OG=(AE+BF),
則AE+BF=2OG=6cm.
所以答案是:6cm.

【考點精析】通過靈活運用垂徑定理,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學習幾何的一個重要方法就是要學會抓住基本圖形,讓我們來做一次研究性學習.

1)如圖①所示的圖形,像我們常見的學習用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點O,試探究∠BOC與∠A的關(guān)系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點O,請直接寫出∠BOC與∠A的關(guān)系式為    _

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中點A、B在坐標軸上,其中A0,a),Bb,0),滿足|a3|+0

1)求點AB的坐標;

2)將AB平移到CD,點A對應點C(﹣2,m),若△ABC面積為13,連接CO,求點C的坐標;

3)在(2)的條件下,求證:∠AOC=∠OAB+OCD

4)如圖2,若ABCD,點C、D也在坐標軸上,點F為線段AB上一動點(不包含AB兩點),連接OF,FP平分∠BFO,∠BCP2PCD,試證明:∠COF3P﹣∠OFP(提示:可直接利用(3)的結(jié)論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在疫情期間利用網(wǎng)絡組織了一次防“新冠病毒”知識競賽,評出特等獎10人,優(yōu)秀獎20人.學校決定給所有獲獎學生各發(fā)一份獎品,同一等次的獎品相同.

1)(列方程組解應用題)若特等獎和優(yōu)秀獎的獎品分別是口罩和溫度計,口罩單價的2倍與溫度計單價的3倍相等,購買這兩種獎品一共花費700元,求口罩和溫度計的單價各是多少元?

2)(利用不等式或不等式組解應用題)若兩種獎品的單價都是整數(shù),且要求特等獎單價比優(yōu)秀獎單價多20元.在總費用不少于440而少于500元的前提下,購買這兩種獎品時它們的單價有幾種情況,請分別求出每種情況特等獎和優(yōu)秀獎獎品的單價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季空調(diào)銷售供不應求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務,為提高生產(chǎn)效率,工廠加班加點,接到任務的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設第x天生產(chǎn)空調(diào)y臺,直接寫出y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設第x天的利潤為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點的中點,過點,垂足在線段上,連接,

(1)求證:;

(2),則 °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】研究擲一枚圖釘,釘尖朝上的概率,兩個小組用同一個圖釘做試驗進行比較,他們的統(tǒng)計數(shù)據(jù)如下:

擲圖釘?shù)拇螖?shù)

50

100

200

300

400

釘尖朝上

的次數(shù)

第一小組

23

39

79

121

160

第二小組

24

41

81

124

164

(1)請你估計第一小組和第二小組所得的概率分別是多少?

(2)你認為哪一個小組的結(jié)果更準確?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于點E,且DE∥BC.已知AE=2 , AC=3 , BC=6,則⊙O的半徑是(  。
A.3
B.4
C.4
D.2

查看答案和解析>>

同步練習冊答案