【題目】某學(xué)校在疫情期間利用網(wǎng)絡(luò)組織了一次防“新冠病毒”知識競賽,評出特等獎10人,優(yōu)秀獎20人.學(xué)校決定給所有獲獎學(xué)生各發(fā)一份獎品,同一等次的獎品相同.

1)(列方程組解應(yīng)用題)若特等獎和優(yōu)秀獎的獎品分別是口罩和溫度計,口罩單價的2倍與溫度計單價的3倍相等,購買這兩種獎品一共花費700元,求口罩和溫度計的單價各是多少元?

2)(利用不等式或不等式組解應(yīng)用題)若兩種獎品的單價都是整數(shù),且要求特等獎單價比優(yōu)秀獎單價多20元.在總費用不少于440而少于500元的前提下,購買這兩種獎品時它們的單價有幾種情況,請分別求出每種情況特等獎和優(yōu)秀獎獎品的單價.

【答案】1)口罩的單價是30元,溫度計的單價是20元;(2)購買兩種獎品時它們的單價有它們的單價有兩種情況:第一種情況中:優(yōu)秀獎單價為8元,特等獎的單價為28元;第二種情況中:優(yōu)秀獎單價為9元,則特等獎的單價為29

【解析】

1)本題可設(shè)口罩的單價是y元,溫度計的單價是z元,然后根據(jù)題意,由等量關(guān)系:口罩單價的2倍與溫度計單價的3倍相等;購買這兩種獎品一共花費700元列出方程組,化簡即可得出答案.

2)本題可設(shè)優(yōu)秀獎單價為x元,則特等獎的單價為(x+20)元,再根據(jù)題意找到不等式關(guān)系:總費用不少于440而少于500元,列出不等式組,解不等式組即可求解.

解:(1)設(shè)口罩的單價是y元,溫度計的單價是z元,

根據(jù)題意得,

解得

答:口罩的單價是30元,溫度計的單價是20元.

2)設(shè)優(yōu)秀獎單價為x元,則特等獎的單價為(x+20)元.

根據(jù)題意得440≤10x+20+20x500

解得8≤x10

因為兩種獎品的單價都是整數(shù),

所以x8x9

當(dāng)x8時,x+2028

當(dāng)x9時,x+2029

答:購買兩種獎品時它們的單價有它們的單價有兩種情況:

第一種情況中:優(yōu)秀獎單價為8元,特等獎的單價為28元;

第二種情況中:優(yōu)秀獎單價為9元,則特等獎的單價為29元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店計劃進(jìn)A,B兩種水果共140千克,這兩種水果的進(jìn)價和售價如表所示

進(jìn)價千克

售價千克

A種水果

5

8

B種水果

9

13

若該水果店購進(jìn)這兩種水果共花費1020元,求該水果店分別購進(jìn)A,B兩種水果各多少千克?

的基礎(chǔ)上,為了迎接春節(jié)的來臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價出售,那么售完后共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以OA為邊的OAB面積為2,其中點B的橫、縱坐標(biāo)均不超過4,且都不小于0,在下列敘述中,正確的是:_____.(請寫出所有正確的選項)

①若點B的橫坐標(biāo)是4,則滿足條件的點B有且只有1個;

②若點B是整點(即橫、縱坐標(biāo)都是整數(shù)),則滿足條件的點B4個;

③在坐標(biāo)系內(nèi),對于任意滿足題意的點B,一定存在一點C,使得CAB、COACOB面積相等;

④在坐標(biāo)系內(nèi),存在一個定點D,使得對于任意滿足條件的點B,DBA、DBO面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求n2﹣4n的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于、兩點,在軸上有一點,動點點以每秒2個單位的速度沿軸向左移動.

1)求兩點的坐標(biāo)

2)求的面積的移動時間(秒)之間的函數(shù)關(guān)系式;

3)當(dāng)何值時,并求此時點的坐標(biāo).

4)當(dāng)何值時的面積是一半,并求此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑CD是弦,若AB=10cm,CD=8cm,那么A、B兩點到直線CD的距離之和為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由趙爽弦圖變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為,,則的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖所示,直線ADABCD分別相交于點A,D,與EC,BF分別相交于點H,G,已知∠1=∠2,∠B=∠C

求證:∠A=∠D

證明:∵∠1=∠2,(已知)∠2=∠AGB   

∴∠1      

ECBF   

∴∠B=∠AEC   

又∵∠B=∠C(已知)

∴∠AEC      

      

∴∠A=∠D   

查看答案和解析>>

同步練習(xí)冊答案