【題目】如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角和擺放在一起,為公共頂點(diǎn),,它們的斜邊長為2,若固定不動(dòng),繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合),設(shè),.
(1)請(qǐng)?jiān)趫D中找出兩對(duì)相似而不全等的三角形,并選取其中一對(duì)加以證明.
(2)求與的函數(shù)關(guān)系式,直接寫出自變量的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在ABCD中,E為AD的中點(diǎn),CE的延長線交BA的延長線于點(diǎn)F,則下列選項(xiàng)中的結(jié)論錯(cuò)誤的是( )
A. FA:FB=1:2 B. AE:BC=1:2
C. BE:CF=1:2 D. S△ABE:S△FBC=1:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:其中說法正確的是( )①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③,④OD:OC=DE:EC,⑤,正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)N為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(),求△ABN的面積S與t的函數(shù)關(guān)系式;
(3)若且時(shí)△OPN∽△COB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊BC在x軸上,斜邊AC上的中線BD交y軸于點(diǎn)E,雙曲線的圖象經(jīng)過點(diǎn)A,若△BEC的面積為4,則k的值為( 。
A. 8B. 8C. 16D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的長AB=2,AB邊與x軸重合,雙曲線y=在第一象限內(nèi)經(jīng)過D點(diǎn)以及BC的中點(diǎn)E.
(1)求A點(diǎn)的橫坐標(biāo);
(2)連接ED,若四邊形ABED的面積為6,求雙曲線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=12cm,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,BN于C,設(shè)AD=x,BC=y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com