【題目】為全面改善公園環(huán)境,現(xiàn)招標建設某全長960米綠化帶,兩個工程隊的競標,隊平均每天綠化長度是隊的2倍,若由一個工程隊單獨完成綠化,隊比隊要多用6天,

1)分別求出兩隊平均每天綠化長度.

2)若決定由兩個工程隊共同合作綠化,要求至多5天完成綠化任務,兩隊都按(1)中的工作效率綠化完2天時,現(xiàn)又多出510米需要綠化,為了不超過5天時限,兩隊決定從第3天開始,各自都提高工作效率,且隊平均每天綠化長度仍是隊的2倍,則隊提高工作效率后平均每天至少綠化多少米?

【答案】1160,80;(2110

【解析】

1)設B隊平均每天綠化長度是x米,則A隊平均每天綠化長度是2x米,依據(jù)由一個工程隊單獨完成綠化,B隊比A隊要多用6天,列分式方程求解即可;
2)設B隊提高工作效率后平均每天至少綠化a米,則A隊平均每天綠化長度是2a米,依據(jù)后3天完成的綠化不少于990米,列不等式求解即可.

1)設B隊平均每天綠化長度是x米,則A隊平均每天綠化長度是2x米,

依題意得:,

解得x80
經(jīng)檢驗x80是原方程的根,且符合題意,
2x160,
答:AB兩隊平均每天綠化長度分別為160米和80米.
2)兩隊都按(1)中的工作效率綠化2天完成:216080)=480(米),
2天后需要綠化:960480510990(米),
B隊提高工作效率后平均每天至少綠化a米,則A隊平均每天綠化長度是2a米,

依題意得:3a2a≥990
解得:a≥110

B隊提高工作效率后平均每天至少綠化110米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,.點出發(fā)沿方向以每秒的速度向終點運動.點出發(fā)沿方向以每秒的速度向點運動、同時當點運動停止時,點隨之停止運動.過點交邊于點,將的中點旋轉180°得到.過點交射線于點,以為邊向右下方作正方形,設點的運動時間為(秒).

1)直接寫出的長度(用含的代數(shù)式表示).

2)當點落在上時,求的值.

3)當正方形有重合部分時,求正方形重合圖形部分的周長與時間的函數(shù)解析式.

4)當直線的某一邊垂直時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點O,并分別交BC于點E、交⊙O于點F,若∠BAD30°

1)求證:BD是⊙O的切線;

2)當CA2CECB時,

①求∠ABC的度數(shù);

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年級共有150名女生,為了解該年級女生實心球成績(單位:米)和一分鐘仰臥起坐成績(單位:個)的情況,從中隨機抽取30名女生進行測試,獲得了他們的相關成績,并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.

a. 實心球成績的頻數(shù)分布表如下:

分組

頻數(shù)

2

m

10

6

2

1

b. 實心球成績在這一組的是:

a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3

c. 一分鐘仰臥起坐成績如下圖所示:

根據(jù)以上信息,回答下列問題:

1 ①表中m的值為__________;

②一分鐘仰臥起坐成績的中位數(shù)為__________;

2)若實心球成績達到7.2米及以上時,成績記為優(yōu)秀.

①請估計全年級女生實心球成績達到優(yōu)秀的人數(shù);

②該年級某班體育委員將本班在這次抽樣測試中被抽取的8名女生的兩項成績的數(shù)據(jù)抄錄如下:

女生代碼

A

B

C

D

E

F

G

H

實心球

8.1

7.7

7.5

7.5

7.3

7.2

7.0

6.5

一分鐘仰臥起坐

*

42

47

*

47

52

*

49

其中有3名女生的一分鐘仰臥起坐成績未抄錄完整,但老師說這8名女生中恰好有4人兩項測試成績都達到了優(yōu)秀,于是體育委員推測女生E的一分鐘仰臥起坐成績達到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省材料,某農場主利用圍墻(圍墻足夠長)為一邊,用總長為的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則長為______時,能圍成的矩形區(qū)域的面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由幾個相同的小正方形搭成的幾何體,搭成這個幾何體需要( )個小正方體,在保持主視圖和左視圖不變的情況下,最多可以拿掉( )個小正方體

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的對稱軸與軸的交點橫坐標是分式方程的解,若拋物線與軸的一個交點為,與軸的交點

1)求拋物線的解析式;

2)若點坐標為,連結,若點是線段上的一個動點,求的最小值.

3)連結過點軸的垂線在第三象限中的拋物線上取點過點作直線的垂線交直線于點,過點軸的平行線交于點,已知

①求點的坐標;

②在拋物線上是否存在一點,使得成立?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地政府計劃為農戶購買農機設備提供補貼.其中購買型、型設備農民所投資的金額與政府補貼的額度存在下表所示的函數(shù)對應關系.

型號

金額

型設備

型設備

投資金額x(萬元)

x

5

x

2

4

補貼金額y(萬元)

y1kxk≠0

2

y2ax2+bxa≠0

2.8

4

1)分別求y1y2的函數(shù)解析式;

2)有一農戶共投資10萬元購買型、型兩種設備,兩種設備的投資均為整數(shù)萬元,要想獲得最大補貼金額,應該如何購買?能獲得的最大補貼金額為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。

A.ABC=∠DCBB.ABD=∠DCA

C.ACDBD.ABDC

查看答案和解析>>

同步練習冊答案