【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67tan48°≈1.11

A.17.0B.21.9C.23.3D.33.3

【答案】C

【解析】

如圖,根據(jù)已知條件得到=12.4=,設(shè)CF=5kAF=12k,根據(jù)勾股定理得到AC==13k=26,求得AF=10CF=24,得到EF=6+24=30,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:如圖,∵=12.4=

∴設(shè)CF=5k,AF=12k

.AC==13k=26,解得.k=2,

AF=10,CF=24,

AE=6

EF=6+24=30,

∴∠DEF=48°

tan48°==1.11

DF=33.3

CD=33.3-10=23.3,答:古樹CD的高度約為23.3米,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生物學(xué)上研究表明:不同濃度的生長素對(duì)植物的生長速度影響不同,在一定范圍內(nèi),生長素的濃度對(duì)植物的生長速度有促進(jìn)作用,相反,在某些濃度范圍,生長速度會(huì)變緩慢,甚至阻礙植物生長(阻礙即植物不生長,甚至枯萎).小林同學(xué)在了解到這一信息后,決定研究生長素濃度與茶樹生長速度的關(guān)系,設(shè)生長素濃度為x/升,生長速度為y毫米/天,當(dāng)x超過4時(shí),茶樹的生長速度y與生長素x濃度滿足關(guān)系式:.實(shí)驗(yàn)數(shù)據(jù)如下表,當(dāng)生長速度為0時(shí),實(shí)驗(yàn)結(jié)束.

x

0

1

2

3

4

5

6

7

8

y

2

4

6

8

10

9

7

4

0

1)如圖,建立平面直角坐標(biāo)系xOy,描出表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)圖象;

2)根據(jù)上述表格,求出整個(gè)實(shí)驗(yàn)過程中yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):   

4)若直線ykx+3與上述函數(shù)圖象有2個(gè)交點(diǎn),則k的取值范圍是:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,EOC上動(dòng)點(diǎn)(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OBF、H,連接OG、CG.

(1)求證:AH=BE;

(2)∠AGO的度數(shù)是否為定值?說明理由;

(3)若∠OGC=90°,BG=,求△OGC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點(diǎn)觀察籃板上沿D點(diǎn)的仰角為45°,在支架底端的A點(diǎn)觀察籃板上沿D點(diǎn)的仰角為54°,點(diǎn)C與籃板下沿點(diǎn)E在同一水平線,若AB=1.91米,籃板高度DE1.05米,求籃板下沿E點(diǎn)與地面的距離.(結(jié)果精確到01m,參考數(shù)據(jù):sin54°≈0.80 cos54°≈0.60,tan54°1.33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度與華氏溫度之間是一次函數(shù)關(guān)系.如圖所示是一個(gè)家用溫度表的表盤、其左邊為攝氏溫度的刻度和讀數(shù)(單位),右邊為華氏溫度的刻度和讀數(shù)(單位).從溫度計(jì)的刻度上可以看出,攝氏溫度與華氏溫度部分對(duì)應(yīng)關(guān)系如下表:

···

···

···

···

1)求之間的函數(shù)關(guān)系式;

2)當(dāng)攝氏溫度為零下時(shí),求華氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且

1)求一次函數(shù)的表達(dá)式;

2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)反比例函數(shù)的圖象記為曲線,將向右平移3個(gè)單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑,以為邊作等腰,且與邊相交于點(diǎn),過點(diǎn)于點(diǎn),并交的延長線于點(diǎn)


1)求證:的切線.

2)若,°,求由線段、所圍成的圖形(陰影部分)面積.

3)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB26PAB(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)CDO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC各邊為邊分別向外作等邊三角形,編號(hào)為①、②、③,將②、①如圖所示依次疊在③上,已知四邊形EMNC與四邊形MPQN的面積分別為97,則斜邊BC的長為( 。

A.5B.9C.10D.16

查看答案和解析>>

同步練習(xí)冊答案