【題目】如圖,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結(jié)論:
①四邊形CEDF有可能成為正方形;
②△DFE是等腰直角三角形;
③四邊形CEDF的面積是定值;
④點C到線段EF的最大距離為.
其中正確的結(jié)論是( )
A.①④ B.②③ C.①②④ D.①②③④
【答案】D.
【解析】
試題分析:①當E、F分別為AC、BC中點時,四邊形CDFE是正方形,故此選項正確;
②①連接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵在△ADE和△CDF中,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.故此選項正確;
③∵△ADE≌△CDF,
∴S△ADE=S△CDF.
∵S四邊形CEDF=S△CED+S△CFD,
∴S四邊形CEDF=S△CED+S△AED,
∴S四邊形CEDF=S△ADC.
∵S△ADC=S△ABC=4.
∴四邊形CEDF的面積是定值4,故本選項正確;
④④△DEF是等腰直角三角形,DE=EF,
當EF∥AB時,∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點,故EF是△ABC的中位線,
∴EF取最小值==2,
∵CE=CF=2,
∴此時點C到線段EF的最大距離為EF=.故此選項正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線L;y=ax2+bx+c(其中a、b、c都不等于0), 它的頂點P的坐標是,與y軸的交點是M(0,c)我們稱以M為頂點,對稱軸是y軸且過點P的拋物線為拋物線L的伴隨拋物線,直線PM為L的伴隨直線.
(1)請直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的關系式:
伴隨拋物線的關系式_________________
伴隨直線的關系式___________________
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3, 則這條拋物線的關系是___________:
(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴隨拋物線和伴隨直線的關系式;
(4)若拋物線L與x軸交于A(x1,0),B(x2,0)兩點x2>x1>0,它的伴隨拋物線與x 軸交于C,D兩點,且AB=CD,請求出a、b、c應滿足的條件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,D、E是△ABC中BC邊上的兩點,AD=AE,要證明△ABE≌△ACD,應該再增加一個什么條件?請你增加這個條件后再給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構(gòu)成相等的角,求此時t的值為多少?
(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在∠AOC的內(nèi)部,請?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD對角線BD上一點,PE⊥DC,PF⊥BC,E、F分別為垂足.
(1)求證:△APD≌△CPD;
(2)若CF=3,CE=4,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠3=∠4,要說明△ABC≌△DCB,
(1)若以“SAS”為依據(jù),則需添加一個條件是________
(2)若以“AAS”為依據(jù),則需添加一個條件是________
(3)若以“ASA”為依據(jù),則需添加一個條件是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.
(1)求這條直線的解析式及點B的坐標;
(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com