15.點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2-4x-1的圖象上,若當(dāng)1<x1<2,3<x2<4時(shí),則y1與y2的大小關(guān)系是y1<y2.(用“>”、“<”、“=”填空)

分析 先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及對(duì)稱軸,根據(jù)圖象上的點(diǎn)的橫坐標(biāo)距離對(duì)稱軸的遠(yuǎn)近來判斷縱坐標(biāo)的大。

解答 解:由二次函數(shù)y=x2-4x-1=(x-2)2-5可知,其圖象開口向上,且對(duì)稱軸為x=2,
∵1<x1<2,3<x2<4,
∴A點(diǎn)橫坐標(biāo)離對(duì)稱軸的距離小于B點(diǎn)橫坐標(biāo)離對(duì)稱軸的距離,
∴y1<y2
故答案為:<.

點(diǎn)評(píng) 本題主要考查對(duì)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能求出對(duì)稱軸和根據(jù)二次函數(shù)的性質(zhì)求出正確答案是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.先化簡(jiǎn),再求值:(x+1-$\frac{15}{x-1}$)÷$\frac{x-4}{x-1}$,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)($\frac{x-1}{x}$-$\frac{1}{x}$)÷$\frac{x-2}{{x}^{2}-x}$
(2)|-3|+(-1)2011×(π-3)0-($\frac{1}{3}$)-1+($\frac{1}{2}$)-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)).
(1)請(qǐng)畫一個(gè)格點(diǎn)△A1B1C1,使△A1B1C1∽△ABC,且相似比不為1;
(2)以C為位似中心,將△ABC縮小為原來的$\frac{1}{2}$,請(qǐng)畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知:AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求證:BC=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.平方得4的數(shù)是±2;立方得-8的數(shù)是-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.用簡(jiǎn)便方法計(jì)算:(-$\frac{4}{9}$-$\frac{5}{12}$+$\frac{1}{6}$)÷(-$\frac{1}{36}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.計(jì)算:tan60°-cos30°×tan45°+sin30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8$\sqrt{2}$,D為斜邊BC的中點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)沿線段AB做勻速運(yùn)動(dòng),P′是P關(guān)于AD的對(duì)稱點(diǎn);點(diǎn)Q由點(diǎn)D出發(fā)沿射線DC方向做勻速運(yùn)動(dòng),且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為S,DQ=m.
(1)請(qǐng)直接寫出點(diǎn)A﹑B兩點(diǎn)的坐標(biāo);
(2)求S關(guān)于m的函數(shù)關(guān)系式;
(3)當(dāng)S取最大值時(shí),求過點(diǎn)P,A,P′的二次函數(shù)關(guān)系式;
(4)在(3)中所求的二次函數(shù)圖象上是否存在一點(diǎn)E,使△EPP′的面積為20?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案