【題目】如圖,的頂點在雙曲線的圖象上,直角邊軸上,,,連接,,則的值是(

A. 4 B. -4 C. 2 D. -2

【答案】B

【解析】

根據(jù)三角形外角性質(zhì)得∠OAC=AOBACB=30°,易得OA=OC=4,然后再RtAOB中利用含30度的直角三角形三邊的關(guān)系得到OB=OC=2,AB=OB=2,則可確定A點坐標為(﹣22),最后把A點坐標代入反比例函數(shù)解析式y=中即可得到k的值

∵∠ACB=30°,AOB=60°,∴∠OAC=AOBACB=30°,∴∠OAC=ACO,OA=OC=4

AOBABC=90°,AOB=60°,OA=4,∴∠OAB=30°,OB=OC=2,AB=OB=2,A點坐標為(﹣22),A(﹣2,2)代入y=k=﹣2×2=﹣4

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測量某特種車輛的性能,研究制定了行駛指數(shù),而的大小與平均速度和行駛路程有關(guān)(不考慮其他因素),由兩部分的和組成,一部分與成正比,另一部分與成正比.在實驗中得到了表格中的數(shù)據(jù):

速度

路程

指數(shù)

1)用含的式子表示;

2)當(dāng)行駛指數(shù)為,而行駛路程為時,求平均速度的值;

3)當(dāng)行駛路程為時,若行駛指數(shù)值最大,求平均速度的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長為的春游隊伍,以的速度向東行進,如圖1和圖2,當(dāng)隊伍排尾行進到位置時,在排尾處的甲有一物品要送到排頭,送到后立即返回排尾,甲的往返速度均為,當(dāng)甲返回排尾后,他及隊伍均停止行進.設(shè)排尾從位置開始行進的時間為,排頭與的距離為

1)當(dāng)時,解答:

的函數(shù)關(guān)系式(不寫的取值范圍);

當(dāng)甲趕到排頭位置時,求的值;在甲從排頭返回到排尾過程中,設(shè)甲與位置的距離為,求的函數(shù)關(guān)系式(不寫的取值范圍)

2)設(shè)甲這次往返隊伍的總時間為,求的函數(shù)關(guān)系式(不寫的取值范圍),并寫出隊伍在此過程中行進的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當(dāng)銷售單價定為44元時,每天可售出300本,銷售單價每漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設(shè)每天銷售為本,銷售單價為.

1)請直接寫出之間的函數(shù)關(guān)系式和自變量的取值范圍;

2)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤元最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正六邊形ABCDEF中,對角線AEBF相交于點M,BDCE相交于點N.

(1)求證:AE=FB;

(2)在不添加任何輔助線的情況下,請直接寫出所有與△ABM全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點A-2,3)關(guān)于y軸的對稱點為點B,連接AB,反比例函數(shù)y=x0)的圖象經(jīng)過點B,過點BBCx軸于點C,點P是該反比例函數(shù)圖象上任意一點.

1)求k的值;

2)若△ABP的面積等于2,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊上一點為圓心的圓,經(jīng)過,兩點,且與邊交于點,為弧的中點,連接,,連接.

1)求證:的切線;

2)已知的半徑,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,反比例函數(shù)與二次函數(shù)的圖象交于點和點

1)當(dāng)時,求反比例函數(shù)的解析式;

2)已知經(jīng)過原點O的兩條直線ABCD分別與雙曲線交于ABC,D,那么ABCD互相平分,所以四邊形ACBD是平行四邊形問:平行四邊形ACBD能否成為矩形?能否成為正方形?若能,請說明線段AB,CD的位置關(guān)系;若不能,請說明理由;

3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案