【題目】某校參加校園青春健身操比賽的16名運動員的身高如下表:
則該校16名運動員身高的平均數(shù)和中位數(shù)分別是( )
A. 173 cm,173 cm B. 174 cm,174 cm
C. 173 cm,174 cm D. 174 cm,175 cm
【答案】B
【解析】這組數(shù)據(jù)的平均數(shù)為:(172×4+173×4+175×4+176×4)÷16=174cm,
∴這組數(shù)據(jù)按照從小到大的順序排列為:172,172,172,172,173,173,173,173,175,175,175,175,176,176,176,176,
∴中位數(shù)為:(173+173)÷2=173cm.
故選A.
點睛:本題考查了平均數(shù)和中位數(shù)的知識,平均數(shù)等于一組數(shù)據(jù)中所有數(shù)據(jù)之和除以數(shù)據(jù)的個數(shù);將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕校绻麛(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:
計算:
她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關系,直接寫出另一部分的結(jié)果。
(4)根據(jù)以上分析,求出原式的結(jié)果。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】考試前,同學們總會采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對該校九年級的部分同學做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,學校將減壓方式分為五類,同學們可根據(jù)自己的情況必選且只選其中一類.學校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)這次抽樣調(diào)查中,一共抽查了多少名學生?
(2)請補全條形統(tǒng)計圖;
(3)請計算扇形統(tǒng)計圖中“享受美食”所對應扇形的圓心角的度數(shù);
(4)根據(jù)調(diào)查結(jié)果,估計該校九年級500名學生中采用“聽音樂”來減壓方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點, 如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種筆記本的售價為2.2元/本,如果買100本以上,超過100本部分的售價為2元/本.
(1)小強和小明分別買了50本和200本,他們倆分別花了多少錢?
(2)如果小紅買這種筆記本花了380元,她買了多少本?
(3)如果小紅買這種筆記本花了n元,她又買了多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在一次數(shù)學考試中,從某班隨機抽取的10名學生得分(單位:分)如下:75,85,90,90,95,85,95,95,100,98.
(1)求這10名學生得分的眾數(shù)、中位數(shù)和平均數(shù);
(2)若該班共有40名學生,估計此次考試的平均成績約為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次主題為“學會生存”的中學生社會實踐活動中,春華同學為了鍛煉自己,他通過了解市場行情,以每件元的價格從批發(fā)市場購進若干件印有北京奧運標志的文化衫到自由市場去推銷,當銷售完件之后,銷售金額達到元,余下的每件降價元,很快推銷完畢,此時銷售金額達到元,春華同學在這次活動中獲得純收入_______元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:
(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關系,并給予證明;
(2)設點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com