【題目】如圖,在平面直角坐標系中,一次函數y=ax﹣a(a為常數)的圖象與y軸相交于點A,與函數的圖象相交于點B(m,1).
(1)求點B的坐標及一次函數的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標.
【答案】(1)y=x﹣1 (2)P點的坐標為(0,1)或(0,3)
【解析】試題分析:(1)由點在函數圖象上,得到點的坐標滿足函數解析式,利用待定系數法即可求得.
(2)分兩種情況,一種是∠BPA=90°,另一種是∠PBA=90°,所以有兩種答案.
試題解析:
(1)∵B在的圖象上,
∴把B(m,1)代入y=得m=2
∴B點的坐標為(2,1)
∵B(2,1)在直線y=ax﹣a(a為常數)上,
∴1=2a﹣a,
∴a=1
∴一次函數的解析式為y=x﹣1.
(2)過B點向y軸作垂線交y軸于P點.此時∠BPA=90°
∵B點的坐標為(2,1)
∴P點的坐標為(0,1)
當PB⊥AB時,
在Rt△P1AB中,PB=2,PA=2
∴AB=2
在等腰直角三角形PAB中,PB=PA=2
∴PA==4
∴OP=4﹣1=3
∴P點的坐標為(0,3)
∴P點的坐標為(0,1)或(0,3).
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線的對稱軸DE交x軸于點E,連接BD.
(1)求經過A,B,C三點的拋物線的函數表達式;
(2)點P是線段BD上一點,當PE=PC時,求點P的坐標;
(3)在(2)的條件下,過點P作PF⊥x軸于點F,G為拋物線上一動點,M為x軸上一動點,N為直線PF上一動點,當以F、M、G為頂點的四邊形是正方形時,請求出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體.一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的材料,并解答問題:
問題1:已知正數,有下列命題
根據以上三個命題所提供的規(guī)律猜想: ,
以上規(guī)律可表示為a+b
問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元。
(1)設池長為x米,水池總造價為y(元),求y和x的函數關系式;
(2)應用“問題1”題中的規(guī)律,求水池的最低造價
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com