精英家教網 > 初中數學 > 題目詳情
20.已知直線y=mx-1上有一點P(1,n)到原點的距離為$\sqrt{10}$,則直線與兩軸所圍成的三角形面積為$\frac{1}{4}$或$\frac{1}{8}$.

分析 先根據點(1,n)到原點的距離是$\sqrt{10}$求出n的值,故可得出此點坐標,把此點坐標代入直線y=mx-1即可得出直線的解析式,由此可得出此直線與兩坐標軸圍成的三角形面積.

解答 解:∵點B(1,n)到原點的距離是$\sqrt{10}$,
∴n2+1=10,即n=±3.
∴(1,±3),
∴一次函數的解析式為:y=4x-1或y=-2x-1.
當一次函數的解析式為y=4x-1時,與兩坐標軸圍成的三角形的面積為:$\frac{1}{2}$×$\frac{1}{4}$×1=$\frac{1}{8}$;
當一次函數的解析式為y=-2x-1時,與兩坐標軸圍成的三角形的面積為:$\frac{1}{2}$×$\frac{1}{2}$×1=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$或$\frac{1}{8}$.

點評 本題考查的是一次函數圖象上點的坐標特點,熟知一次函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

10.對于某些數學問題,靈活運用整體思想,可以化難為易.在解二元一次方程組時,就可以運用整體代入法:如解方程組:$\left\{\begin{array}{l}x+2(x+y)=3---①\\ x+y=1---②\end{array}\right.$
解:把②代入①得,x+2×1=3,解得x=1.
把x=1代入②得,y=0.
所以方程組的解為 $\left\{\begin{array}{l}x=1\\ y=0.\end{array}\right.$
請用同樣的方法解方程組:$\left\{\begin{array}{l}2x-y-2=0----①\\ \frac{2x-y+5}{7}+2y=9----②\end{array}\right.$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

11.如圖,平面直角坐標系xOy中,點A(a,1)在雙曲線上y=$\frac{3}{x}$上,函數y=kx+b的圖象經過點A,與y軸上交點B(0,-2),
(1)求直線AB的解析式;
(2)設直線AB交x軸于點C,求三角形OAC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

8.某地區(qū)2013年的人均收入為12000元,2015年的人均收入為14520.求人均收入的年平均增長率.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

15.若關于x的一次函數y=x+3a-12的圖象與y軸的交點在x軸上方,則a的取值范圍是a>4.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.如圖所示,在平面直角坐標系中,AD∥BC∥x軸,AD=BC=7,A(0,3),C(5,-1).
(1)求B、D兩點坐標;
(2)求四邊形ABCD面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

12.解不等式組:$\left\{\begin{array}{l}{2x-4<0}\\{x+1≥0}\end{array}\right.$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

9.6月30日以來的強降雨造成某地洪災.某市組織20輛汽車裝運食品、藥品和生活用品三種物質共100噸前往災區(qū).按計劃20輛汽車都要裝運,且每輛汽車只能裝運同一種物質,且必須裝滿.根據下表提供的信息,解答下列問題.
物資種類食品藥品生活用品
每輛汽車運載量(噸)654
(1)設裝運食品的車輛數為x,裝運藥品的車輛數為y,求y與x的函數關系式;
(2)如果裝運食品的車輛數不少于5輛,裝運藥品的車輛數不少于4輛,那么有幾種車輛安排方案?請寫出所用的方案.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

10.解方程組:$\left\{\begin{array}{l}{3x+2y=8}\\{2x-y=3}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案