【題目】如圖,正方形ABCD邊長為6,E是BC的中點,連接AE,以AE為邊在正方形內(nèi)部作∠EAF=45°,邊交于點,連接,則下列說法中:①;②;③tan∠AFE=3;④.正確的有( )
A.①②③B.②④C.①④D.②③④
【答案】D
【解析】
延長CB到G,使BG=DF,連接AG,證明△ABG≌△ADF,即可證得AG=AF,∠DAF=∠BAG,再證明△AEG≌△AEF,根據(jù)全等三角形的對應邊相等即可得出結(jié)論.
證明:延長CB到G,使BG=DF,連接AG.如圖所示:
∵四邊形ABCD是正方形,
∴AB=AD,∠ABE=∠D=90°,
∴∠ABG=90°=∠D,
∵△ABG和△ADF中,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠1=∠2,
又∵∠EAF=45°,∠DAB=90°,
∴∠2+∠3=45°,
∴∠1+∠3=45°,
∴∠GAE=∠EAF=45°.
在△AEG和△AEF中,
∴△AEG≌△AEF(SAS),
∴GE=EF,
∵GE=BG+BE,DF=BG,
∴EF=DF+BF,故②正確,
∵BE=EC=3,AB=6,
,
∴∠3≠30°,故①錯誤,
設DF=x,則EF=x+3,
在Rt△EFC中,∵EF2=CF2+EC2,
∴(x+3)2=32+(6-x)2,
∴x=2,
∴DF=BG=2,
,故③正確,
,故④正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 交 軸于 兩點,交 軸于點 ,直線經(jīng)過點 .
(1)求拋物線的解析式;
(2) 是直線上方的拋物線上一動點,求 的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】美麗的雪花扮靚了我們可愛的家鄉(xiāng),但高速公路清雪刻不容緩.某高速公路維護站引進甲、乙兩種型號的清雪車,已知甲型清雪車比乙型清雪車每天多清理路段6千米,甲型清雪車清理90千米與乙型清雪車清理60千米路段所用的時間相同.
(1)甲型、乙型清雪車每天各清理路段多少千米?
(2)此公路維護站欲購置甲、乙兩種型號清雪車共20臺,甲型每臺30萬元,乙型每臺15萬元,若在購款不超過360萬元,甲型、乙型都購買的情況下,甲型清雪車最多可購買幾臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)慢車的速度為_____km/h,快車的速度為_____km/h;
(2)解釋圖中點C的實際意義并求出點C的坐標;
(3)求當x為多少時,兩車之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在信息快速發(fā)展的社會,“信息消費”已成為人們生活的重要部分.鄭州市的一個社區(qū)隨機抽取了部分家庭,調(diào)查每月用于信息消費的金額,數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計圖.已知A、B兩組戶數(shù)直方圖的高度比為1:5,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題.
(1)A組的頻數(shù)是 ,本次調(diào)查樣本的容量是 ;
(2)補全直方圖(需標明各組頻數(shù));
(3)若該社區(qū)有1500戶住戶,請估計月信息消費額不少于300元的戶數(shù)是多少?
月消費額分組統(tǒng)計表
組別 | 消費額(元) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)經(jīng)過點(﹣1,0),且滿足4a+2b+c>0,有下列結(jié)論:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=2,AC=,∠ACB=45°,D是平面內(nèi)一點且∠ADB=30°,則線段CD的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標金額之和返還相應價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:
(1)該顧客至少可得___元購物券,至多可得___元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com