【題目】某校體育組為了解全校學(xué)生“最喜歡的一項球類項目”,隨機抽取了部分學(xué)生進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖回答下列問題:
(1)請補全條形統(tǒng)計圖(圖2);
(2)在扇形統(tǒng)計圖中,“籃球”部分所對應(yīng)的圓心角是____________度?
(3)籃球教練在制定訓(xùn)練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學(xué)中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
【答案】(1)見解析;(2)144;(3)
【解析】
(1)先利用喜歡足球的人數(shù)和它所占的百分比計算出調(diào)查的總?cè)藬?shù),再計算出喜歡乒乓球的人數(shù),然后補全條形統(tǒng)計圖;
(2)用360°乘以喜歡籃球人數(shù)所占的百分比即可;
(3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好是甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)調(diào)查的總?cè)藬?shù)為8÷16%=50(人),
喜歡乒乓球的人數(shù)為50-8-20-6-2=14(人),
補全條形統(tǒng)計圖如下:
(2)“籃球”部分所對應(yīng)的圓心角=360×40%=144°;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好是甲和乙的結(jié)果數(shù)為2,
所以抽取的兩人恰好是甲和乙的概率:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向的海岸線上,有兩艘巡邏船,現(xiàn)均收到故障船的求救信號.已知兩船相距海里,船在船的北偏東60°方向上,船在船的東南方向上, 上有一觀測點,測得船正好在觀測點的南偏東75°方向上.
(1)分別求出與,與間的距離和; (本問如果有根號,結(jié)果請保留根號) (此提示可以幫助你解題:∵,∴)
(2)已知距觀測點處100海里范圍內(nèi)有暗礁,若巡邏船沿直線去營救船,去營救的途中有無觸礁的危險?(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是線段AB上一點,AC=5cm,點P從點A出發(fā)沿AB以3cm/s的速度向點B運動,點Q從點C出發(fā)沿CB以1cm/s的速度向點B運動,兩點同時出發(fā),結(jié)果點P比點Q先到3s.
(1)求AB的長;
(2)設(shè)點P,Q出發(fā)的時間為ts,求點P沒有超過點Q時,t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價;
(2)該款外套9月份投放市場的批發(fā)價為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)
②進入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎(chǔ)上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎(chǔ)上實施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC=3∠ACD.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點A作AG⊥CD,垂足為點G,求證:CF+DG=CG;
(3)如圖3,在(2)的條件下,點H為AC上一點,分別連接DH,OH,OH⊥DH,過點C作CP⊥AC,交⊙O于點P,OH:CP=1: ,CF=12,連接PF,求PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標(biāo)為(﹣1,0),則下面的四個結(jié)論,其中正確的個數(shù)為( )
①2a+b=0②4a﹣2b+c<0③ac>0④當(dāng)y>0時,﹣1<x<4
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAP是等腰直角三角形,∠OAP=90°,點A在第四象限,點P坐標(biāo)為(8,0),拋物線y=ax2+bx+c經(jīng)過原點O和A、P兩點.
(1)求拋物線的函數(shù)關(guān)系式.
(2)點B是y軸正半軸上一點,連接AB,過點B作AB的垂線交拋物線于C、D兩點,且BC=AB,求點B坐標(biāo);
(3)在(2)的條件下,點M是線段BC上一點,過點M作x軸的垂線交拋物線于點N,求△CBN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點A(1,4)和點B(n,).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com