【題目】如圖1,點O在線段AB上,AO4,OB2OC為射線,且∠BOC60°,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做運動,設(shè)運動時間為t秒.

1)當(dāng)t1秒時,則OP   ,SABP   ;

2)當(dāng)ABP是直角三角形時,求t的值;

3)如圖2,當(dāng)APAB時,過點AAQBP,并使得∠QOP=∠B,求AQBP的值.為了求AQBP的值,小華同學(xué)嘗試過O點作OEAPBP于點E,試利用小華同學(xué)給我們的啟發(fā)補全圖形并求AQBP的值.

【答案】12,3 ;(2)當(dāng)△ABP是直角三角形時,t2t;(3)補全圖形見解析,AQPB12

【解析】

1)作PDAB于點D,利用三角函數(shù)求解;

2)當(dāng)△ABP是直角三角形時,分∠A90°、∠B90°、∠APB90°,畫出對應(yīng)圖形,利用30°角所對的直角邊等于斜邊的一半及勾股定理求解;

3)過點OOEAP,交PB于點E,構(gòu)造一對相似三角形,即△OAQ∽△PEO,利用對應(yīng)邊成比例求解.

1)當(dāng)t1秒時,OP2t2×12

如答圖1,過點PPDAB于點D

Rt△POD中,PDOPsin60°

∴SABPABPD×4+2×3

故答案為:2,3

2)當(dāng)△ABP是直角三角形時,

①若∠A90°

∵∠BOC60°且∠BOC>∠A,

∴∠A≠90°,故此種情形不存在;

②若∠B90°,如答圖2所示:

∵∠BOC60°,

∴∠BPO30°

OP2OB4,又OP2t,

t2

③若∠APB90°,如答圖3所示:

過點PPD⊥AB于點D,則ODOPsin30°t,PDOPsin60°t

ADOA+OD4+t,BDOB-OD2-t

RtABP中,由勾股定理得:PA2+PB2AB2

∴(AD2+PD2+BD2+PD2)=AB2,

[4+t2+t2]+[2-t2+t2]62,

解方程得:tt(負值舍去),

∴t

綜上所述,當(dāng)△ABP是直角三角形時,t2t

3)如答圖4,過點OOEAP,交PB于點E,

則有,

∴PEPB

APAB

∴∠APB=∠B,

OEAP,

∴∠OEB=∠APB,

∴∠OEB=∠B

OEOB2,∠3+B180°

AQPB,

∴∠OAQ+B180°

∴∠OAQ=∠3;

∵∠AOP=∠1+QOP=∠2+B,∠QOP=∠B,

∴∠1=∠2;

∴△OAQ∽△PEO,

=,即,

化簡得:AQPB12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1為放置在水平桌面l上的臺燈,底座的高AB5cm,長度均為20cm的連桿BCCDAB始終在同一平面上.

1)轉(zhuǎn)動連桿BC,CD,使∠BCD成平角,∠ABC150°,如圖2,求連桿端點D離桌面l的高度DE

2)將(1)中的連桿CD再繞點C逆時針旋轉(zhuǎn),經(jīng)試驗后發(fā)現(xiàn),如圖3,當(dāng)∠BCD150°時臺燈光線最佳.求此時連桿端點D離桌面l的高度比原來降低了多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知某個二次函數(shù)的圖象經(jīng)過點A1,2),B2,﹣1),C4,﹣1),且該二次函數(shù)的最小值是﹣2

1)請在圖中描出該函數(shù)圖象上另外的兩個點,并畫出圖象;

2)求出該二次函數(shù)的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AN上有一點B,AB5tanMAN,點C從點A出發(fā)以每秒3個單位長度的速度沿射線AN運動,過點CCDAN交射線AM于點D,在射線CD上取點F,使得CFCB,連結(jié)AF.設(shè)點C的運動時間是t(秒)(t0).

1)當(dāng)點C在點B右側(cè)時,求AD、DF的長.(用含t的代數(shù)式表示)

2)連結(jié)BD,設(shè)BCD的面積為S平方單位,求St之間的函數(shù)關(guān)系式.

3)當(dāng)AFD是軸對稱圖形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架其中卷第九“勾股”章主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系其中記載:“今有邑,東西七里南北九里,各中開門,出東門一十五里有木問:出南門幾何步而見木?”譯文:“如圖,今有一座長方形小城東西向城墻長7,南北向城墻長9,各城墻正中均開一城門走出東門15里處有棵大樹問走出南門多少步恰好能望見這棵樹?”(注:1里=300)你的計算結(jié)果是:出南門________步而見木

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=∠C

1)求證:AE與⊙O相切于點A

2)若AEBC,BC8,AB2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線

理解:(1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC相似對角線的四邊形(保留畫圖痕跡,找出3個即可);

2)如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對角線BD平分∠ABC.求證:BD是四邊形ABCD相似對角線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣3,﹣2,﹣1,0,12,3這七個數(shù)中,隨機抽取一個數(shù)記為m,若數(shù)m使關(guān)于x的分式方程1的解是非負數(shù),且使得二次函數(shù)y=(m2x2+2x+1的圖象與x軸有交點,那么滿足條件所有m之和是(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)若此函數(shù)圖象與軸只有一個交點,試寫出滿足的關(guān)系式.

2)若,點,是該函數(shù)圖象上的3個點,試比較,的大小.

3)若,當(dāng)時,函數(shù)的增大而增大,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案